Filtered by CWE-362
Total 1660 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-48921 1 Linux 1 Linux Kernel 2024-09-12 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: sched/fair: Fix fault in reweight_entity Syzbot found a GPF in reweight_entity. This has been bisected to commit 4ef0c5c6b5ba ("kernel/sched: Fix sched_fork() access an invalid sched_task_group") There is a race between sched_post_fork() and setpriority(PRIO_PGRP) within a thread group that causes a null-ptr-deref in reweight_entity() in CFS. The scenario is that the main process spawns number of new threads, which then call setpriority(PRIO_PGRP, 0, -20), wait, and exit. For each of the new threads the copy_process() gets invoked, which adds the new task_struct and calls sched_post_fork() for it. In the above scenario there is a possibility that setpriority(PRIO_PGRP) and set_one_prio() will be called for a thread in the group that is just being created by copy_process(), and for which the sched_post_fork() has not been executed yet. This will trigger a null pointer dereference in reweight_entity(), as it will try to access the run queue pointer, which hasn't been set. Before the mentioned change the cfs_rq pointer for the task has been set in sched_fork(), which is called much earlier in copy_process(), before the new task is added to the thread_group. Now it is done in the sched_post_fork(), which is called after that. To fix the issue the remove the update_load param from the update_load param() function and call reweight_task() only if the task flag doesn't have the TASK_NEW flag set.
CVE-2022-48941 1 Linux 1 Linux Kernel 2024-09-12 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: ice: fix concurrent reset and removal of VFs Commit c503e63200c6 ("ice: Stop processing VF messages during teardown") introduced a driver state flag, ICE_VF_DEINIT_IN_PROGRESS, which is intended to prevent some issues with concurrently handling messages from VFs while tearing down the VFs. This change was motivated by crashes caused while tearing down and bringing up VFs in rapid succession. It turns out that the fix actually introduces issues with the VF driver caused because the PF no longer responds to any messages sent by the VF during its .remove routine. This results in the VF potentially removing its DMA memory before the PF has shut down the device queues. Additionally, the fix doesn't actually resolve concurrency issues within the ice driver. It is possible for a VF to initiate a reset just prior to the ice driver removing VFs. This can result in the remove task concurrently operating while the VF is being reset. This results in similar memory corruption and panics purportedly fixed by that commit. Fix this concurrency at its root by protecting both the reset and removal flows using the existing VF cfg_lock. This ensures that we cannot remove the VF while any outstanding critical tasks such as a virtchnl message or a reset are occurring. This locking change also fixes the root cause originally fixed by commit c503e63200c6 ("ice: Stop processing VF messages during teardown"), so we can simply revert it. Note that I kept these two changes together because simply reverting the original commit alone would leave the driver vulnerable to worse race conditions.
CVE-2022-48887 1 Linux 1 Linux Kernel 2024-09-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Remove rcu locks from user resources User resource lookups used rcu to avoid two extra atomics. Unfortunately the rcu paths were buggy and it was easy to make the driver crash by submitting command buffers from two different threads. Because the lookups never show up in performance profiles replace them with a regular spin lock which fixes the races in accesses to those shared resources. Fixes kernel oops'es in IGT's vmwgfx execution_buffer stress test and seen crashes with apps using shared resources.
CVE-2022-30205 1 Microsoft 21 Windows 10, Windows 10 1507, Windows 10 1607 and 18 more 2024-09-12 6.6 Medium
Windows Group Policy Elevation of Privilege Vulnerability
CVE-2024-38596 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-09-11 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix data races in unix_release_sock/unix_stream_sendmsg A data-race condition has been identified in af_unix. In one data path, the write function unix_release_sock() atomically writes to sk->sk_shutdown using WRITE_ONCE. However, on the reader side, unix_stream_sendmsg() does not read it atomically. Consequently, this issue is causing the following KCSAN splat to occur: BUG: KCSAN: data-race in unix_release_sock / unix_stream_sendmsg write (marked) to 0xffff88867256ddbb of 1 bytes by task 7270 on cpu 28: unix_release_sock (net/unix/af_unix.c:640) unix_release (net/unix/af_unix.c:1050) sock_close (net/socket.c:659 net/socket.c:1421) __fput (fs/file_table.c:422) __fput_sync (fs/file_table.c:508) __se_sys_close (fs/open.c:1559 fs/open.c:1541) __x64_sys_close (fs/open.c:1541) x64_sys_call (arch/x86/entry/syscall_64.c:33) do_syscall_64 (arch/x86/entry/common.c:?) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) read to 0xffff88867256ddbb of 1 bytes by task 989 on cpu 14: unix_stream_sendmsg (net/unix/af_unix.c:2273) __sock_sendmsg (net/socket.c:730 net/socket.c:745) ____sys_sendmsg (net/socket.c:2584) __sys_sendmmsg (net/socket.c:2638 net/socket.c:2724) __x64_sys_sendmmsg (net/socket.c:2753 net/socket.c:2750 net/socket.c:2750) x64_sys_call (arch/x86/entry/syscall_64.c:33) do_syscall_64 (arch/x86/entry/common.c:?) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) value changed: 0x01 -> 0x03 The line numbers are related to commit dd5a440a31fa ("Linux 6.9-rc7"). Commit e1d09c2c2f57 ("af_unix: Fix data races around sk->sk_shutdown.") addressed a comparable issue in the past regarding sk->sk_shutdown. However, it overlooked resolving this particular data path. This patch only offending unix_stream_sendmsg() function, since the other reads seem to be protected by unix_state_lock() as discussed in
CVE-2024-38601 2024-09-11 4.1 Medium
In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Fix a race between readers and resize checks The reader code in rb_get_reader_page() swaps a new reader page into the ring buffer by doing cmpxchg on old->list.prev->next to point it to the new page. Following that, if the operation is successful, old->list.next->prev gets updated too. This means the underlying doubly-linked list is temporarily inconsistent, page->prev->next or page->next->prev might not be equal back to page for some page in the ring buffer. The resize operation in ring_buffer_resize() can be invoked in parallel. It calls rb_check_pages() which can detect the described inconsistency and stop further tracing: [ 190.271762] ------------[ cut here ]------------ [ 190.271771] WARNING: CPU: 1 PID: 6186 at kernel/trace/ring_buffer.c:1467 rb_check_pages.isra.0+0x6a/0xa0 [ 190.271789] Modules linked in: [...] [ 190.271991] Unloaded tainted modules: intel_uncore_frequency(E):1 skx_edac(E):1 [ 190.272002] CPU: 1 PID: 6186 Comm: cmd.sh Kdump: loaded Tainted: G E 6.9.0-rc6-default #5 158d3e1e6d0b091c34c3b96bfd99a1c58306d79f [ 190.272011] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552c-rebuilt.opensuse.org 04/01/2014 [ 190.272015] RIP: 0010:rb_check_pages.isra.0+0x6a/0xa0 [ 190.272023] Code: [...] [ 190.272028] RSP: 0018:ffff9c37463abb70 EFLAGS: 00010206 [ 190.272034] RAX: ffff8eba04b6cb80 RBX: 0000000000000007 RCX: ffff8eba01f13d80 [ 190.272038] RDX: ffff8eba01f130c0 RSI: ffff8eba04b6cd00 RDI: ffff8eba0004c700 [ 190.272042] RBP: ffff8eba0004c700 R08: 0000000000010002 R09: 0000000000000000 [ 190.272045] R10: 00000000ffff7f52 R11: ffff8eba7f600000 R12: ffff8eba0004c720 [ 190.272049] R13: ffff8eba00223a00 R14: 0000000000000008 R15: ffff8eba067a8000 [ 190.272053] FS: 00007f1bd64752c0(0000) GS:ffff8eba7f680000(0000) knlGS:0000000000000000 [ 190.272057] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 190.272061] CR2: 00007f1bd6662590 CR3: 000000010291e001 CR4: 0000000000370ef0 [ 190.272070] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 190.272073] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 190.272077] Call Trace: [ 190.272098] <TASK> [ 190.272189] ring_buffer_resize+0x2ab/0x460 [ 190.272199] __tracing_resize_ring_buffer.part.0+0x23/0xa0 [ 190.272206] tracing_resize_ring_buffer+0x65/0x90 [ 190.272216] tracing_entries_write+0x74/0xc0 [ 190.272225] vfs_write+0xf5/0x420 [ 190.272248] ksys_write+0x67/0xe0 [ 190.272256] do_syscall_64+0x82/0x170 [ 190.272363] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 190.272373] RIP: 0033:0x7f1bd657d263 [ 190.272381] Code: [...] [ 190.272385] RSP: 002b:00007ffe72b643f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [ 190.272391] RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007f1bd657d263 [ 190.272395] RDX: 0000000000000002 RSI: 0000555a6eb538e0 RDI: 0000000000000001 [ 190.272398] RBP: 0000555a6eb538e0 R08: 000000000000000a R09: 0000000000000000 [ 190.272401] R10: 0000555a6eb55190 R11: 0000000000000246 R12: 00007f1bd6662500 [ 190.272404] R13: 0000000000000002 R14: 00007f1bd6667c00 R15: 0000000000000002 [ 190.272412] </TASK> [ 190.272414] ---[ end trace 0000000000000000 ]--- Note that ring_buffer_resize() calls rb_check_pages() only if the parent trace_buffer has recording disabled. Recent commit d78ab792705c ("tracing: Stop current tracer when resizing buffer") causes that it is now always the case which makes it more likely to experience this issue. The window to hit this race is nonetheless very small. To help reproducing it, one can add a delay loop in rb_get_reader_page(): ret = rb_head_page_replace(reader, cpu_buffer->reader_page); if (!ret) goto spin; for (unsigned i = 0; i < 1U << 26; i++) /* inserted delay loop */ __asm__ __volatile__ ("" : : : "memory"); rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; .. ---truncated---
CVE-2024-38613 2024-09-11 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: m68k: Fix spinlock race in kernel thread creation Context switching does take care to retain the correct lock owner across the switch from 'prev' to 'next' tasks. This does rely on interrupts remaining disabled for the entire duration of the switch. This condition is guaranteed for normal process creation and context switching between already running processes, because both 'prev' and 'next' already have interrupts disabled in their saved copies of the status register. The situation is different for newly created kernel threads. The status register is set to PS_S in copy_thread(), which does leave the IPL at 0. Upon restoring the 'next' thread's status register in switch_to() aka resume(), interrupts then become enabled prematurely. resume() then returns via ret_from_kernel_thread() and schedule_tail() where run queue lock is released (see finish_task_switch() and finish_lock_switch()). A timer interrupt calling scheduler_tick() before the lock is released in finish_task_switch() will find the lock already taken, with the current task as lock owner. This causes a spinlock recursion warning as reported by Guenter Roeck. As far as I can ascertain, this race has been opened in commit 533e6903bea0 ("m68k: split ret_from_fork(), simplify kernel_thread()") but I haven't done a detailed study of kernel history so it may well predate that commit. Interrupts cannot be disabled in the saved status register copy for kernel threads (init will complain about interrupts disabled when finally starting user space). Disable interrupts temporarily when switching the tasks' register sets in resume(). Note that a simple oriw 0x700,%sr after restoring sr is not enough here - this leaves enough of a race for the 'spinlock recursion' warning to still be observed. Tested on ARAnyM and qemu (Quadra 800 emulation).
CVE-2021-47599 2024-09-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: use latest_dev in btrfs_show_devname The test case btrfs/238 reports the warning below: WARNING: CPU: 3 PID: 481 at fs/btrfs/super.c:2509 btrfs_show_devname+0x104/0x1e8 [btrfs] CPU: 2 PID: 1 Comm: systemd Tainted: G W O 5.14.0-rc1-custom #72 Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015 Call trace: btrfs_show_devname+0x108/0x1b4 [btrfs] show_mountinfo+0x234/0x2c4 m_show+0x28/0x34 seq_read_iter+0x12c/0x3c4 vfs_read+0x29c/0x2c8 ksys_read+0x80/0xec __arm64_sys_read+0x28/0x34 invoke_syscall+0x50/0xf8 do_el0_svc+0x88/0x138 el0_svc+0x2c/0x8c el0t_64_sync_handler+0x84/0xe4 el0t_64_sync+0x198/0x19c Reason: While btrfs_prepare_sprout() moves the fs_devices::devices into fs_devices::seed_list, the btrfs_show_devname() searches for the devices and found none, leading to the warning as in above. Fix: latest_dev is updated according to the changes to the device list. That means we could use the latest_dev->name to show the device name in /proc/self/mounts, the pointer will be always valid as it's assigned before the device is deleted from the list in remove or replace. The RCU protection is sufficient as the device structure is freed after synchronization.
CVE-2021-47613 2024-09-11 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: i2c: virtio: fix completion handling The driver currently assumes that the notify callback is only received when the device is done with all the queued buffers. However, this is not true, since the notify callback could be called without any of the queued buffers being completed (for example, with virtio-pci and shared interrupts) or with only some of the buffers being completed (since the driver makes them available to the device in multiple separate virtqueue_add_sgs() calls). This can lead to incorrect data on the I2C bus or memory corruption in the guest if the device operates on buffers which are have been freed by the driver. (The WARN_ON in the driver is also triggered.) BUG kmalloc-128 (Tainted: G W ): Poison overwritten First byte 0x0 instead of 0x6b Allocated in i2cdev_ioctl_rdwr+0x9d/0x1de age=243 cpu=0 pid=28 memdup_user+0x2e/0xbd i2cdev_ioctl_rdwr+0x9d/0x1de i2cdev_ioctl+0x247/0x2ed vfs_ioctl+0x21/0x30 sys_ioctl+0xb18/0xb41 Freed in i2cdev_ioctl_rdwr+0x1bb/0x1de age=68 cpu=0 pid=28 kfree+0x1bd/0x1cc i2cdev_ioctl_rdwr+0x1bb/0x1de i2cdev_ioctl+0x247/0x2ed vfs_ioctl+0x21/0x30 sys_ioctl+0xb18/0xb41 Fix this by calling virtio_get_buf() from the notify handler like other virtio drivers and by actually waiting for all the buffers to be completed.
CVE-2022-48745 2024-09-11 4.1 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Use del_timer_sync in fw reset flow of halting poll Substitute del_timer() with del_timer_sync() in fw reset polling deactivation flow, in order to prevent a race condition which occurs when del_timer() is called and timer is deactivated while another process is handling the timer interrupt. A situation that led to the following call trace: RIP: 0010:run_timer_softirq+0x137/0x420 <IRQ> recalibrate_cpu_khz+0x10/0x10 ktime_get+0x3e/0xa0 ? sched_clock_cpu+0xb/0xc0 __do_softirq+0xf5/0x2ea irq_exit_rcu+0xc1/0xf0 sysvec_apic_timer_interrupt+0x9e/0xc0 asm_sysvec_apic_timer_interrupt+0x12/0x20 </IRQ>
CVE-2024-32936 2024-09-11 4.1 Medium
In the Linux kernel, the following vulnerability has been resolved: media: ti: j721e-csi2rx: Fix races while restarting DMA After the frame is submitted to DMA, it may happen that the submitted list is not updated soon enough, and the DMA callback is triggered before that. This can lead to kernel crashes, so move everything in a single lock/unlock section to prevent such races.
CVE-2024-38306 2024-09-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: protect folio::private when attaching extent buffer folios [BUG] Since v6.8 there are rare kernel crashes reported by various people, the common factor is bad page status error messages like this: BUG: Bad page state in process kswapd0 pfn:d6e840 page: refcount:0 mapcount:0 mapping:000000007512f4f2 index:0x2796c2c7c pfn:0xd6e840 aops:btree_aops ino:1 flags: 0x17ffffe0000008(uptodate|node=0|zone=2|lastcpupid=0x3fffff) page_type: 0xffffffff() raw: 0017ffffe0000008 dead000000000100 dead000000000122 ffff88826d0be4c0 raw: 00000002796c2c7c 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: non-NULL mapping [CAUSE] Commit 09e6cef19c9f ("btrfs: refactor alloc_extent_buffer() to allocate-then-attach method") changes the sequence when allocating a new extent buffer. Previously we always called grab_extent_buffer() under mapping->i_private_lock, to ensure the safety on modification on folio::private (which is a pointer to extent buffer for regular sectorsize). This can lead to the following race: Thread A is trying to allocate an extent buffer at bytenr X, with 4 4K pages, meanwhile thread B is trying to release the page at X + 4K (the second page of the extent buffer at X). Thread A | Thread B -----------------------------------+------------------------------------- | btree_release_folio() | | This is for the page at X + 4K, | | Not page X. | | alloc_extent_buffer() | |- release_extent_buffer() |- filemap_add_folio() for the | | |- atomic_dec_and_test(eb->refs) | page at bytenr X (the first | | | | page). | | | | Which returned -EEXIST. | | | | | | | |- filemap_lock_folio() | | | | Returned the first page locked. | | | | | | | |- grab_extent_buffer() | | | | |- atomic_inc_not_zero() | | | | | Returned false | | | | |- folio_detach_private() | | |- folio_detach_private() for X | |- folio_test_private() | | |- folio_test_private() | Returned true | | | Returned true |- folio_put() | |- folio_put() Now there are two puts on the same folio at folio X, leading to refcount underflow of the folio X, and eventually causing the BUG_ON() on the page->mapping. The condition is not that easy to hit: - The release must be triggered for the middle page of an eb If the release is on the same first page of an eb, page lock would kick in and prevent the race. - folio_detach_private() has a very small race window It's only between folio_test_private() and folio_clear_private(). That's exactly when mapping->i_private_lock is used to prevent such race, and commit 09e6cef19c9f ("btrfs: refactor alloc_extent_buffer() to allocate-then-attach method") screwed that up. At that time, I thought the page lock would kick in as filemap_release_folio() also requires the page to be locked, but forgot the filemap_release_folio() only locks one page, not all pages of an extent buffer. [FIX] Move all the code requiring i_private_lock into attach_eb_folio_to_filemap(), so that everything is done with proper lock protection. Furthermore to prevent future problems, add an extra lockdep_assert_locked() to ensure we're holding the proper lock. To reproducer that is able to hit the race (takes a few minutes with instrumented code inserting delays to alloc_extent_buffer()): #!/bin/sh drop_caches () { while(true); do echo 3 > /proc/sys/vm/drop_caches echo 1 > /proc/sys/vm/compact_memory done } run_tar () { while(true); do for x in `seq 1 80` ; do tar cf /dev/zero /mnt > /dev/null & done wait done } mkfs.btrfs -f -d single -m single ---truncated---
CVE-2024-42232 1 Linux 1 Linux Kernel 2024-09-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: libceph: fix race between delayed_work() and ceph_monc_stop() The way the delayed work is handled in ceph_monc_stop() is prone to races with mon_fault() and possibly also finish_hunting(). Both of these can requeue the delayed work which wouldn't be canceled by any of the following code in case that happens after cancel_delayed_work_sync() runs -- __close_session() doesn't mess with the delayed work in order to avoid interfering with the hunting interval logic. This part was missed in commit b5d91704f53e ("libceph: behave in mon_fault() if cur_mon < 0") and use-after-free can still ensue on monc and objects that hang off of it, with monc->auth and monc->monmap being particularly susceptible to quickly being reused. To fix this: - clear monc->cur_mon and monc->hunting as part of closing the session in ceph_monc_stop() - bail from delayed_work() if monc->cur_mon is cleared, similar to how it's done in mon_fault() and finish_hunting() (based on monc->hunting) - call cancel_delayed_work_sync() after the session is closed
CVE-2024-40943 2024-09-11 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix races between hole punching and AIO+DIO After commit "ocfs2: return real error code in ocfs2_dio_wr_get_block", fstests/generic/300 become from always failed to sometimes failed: ======================================================================== [ 473.293420 ] run fstests generic/300 [ 475.296983 ] JBD2: Ignoring recovery information on journal [ 475.302473 ] ocfs2: Mounting device (253,1) on (node local, slot 0) with ordered data mode. [ 494.290998 ] OCFS2: ERROR (device dm-1): ocfs2_change_extent_flag: Owner 5668 has an extent at cpos 78723 which can no longer be found [ 494.291609 ] On-disk corruption discovered. Please run fsck.ocfs2 once the filesystem is unmounted. [ 494.292018 ] OCFS2: File system is now read-only. [ 494.292224 ] (kworker/19:11,2628,19):ocfs2_mark_extent_written:5272 ERROR: status = -30 [ 494.292602 ] (kworker/19:11,2628,19):ocfs2_dio_end_io_write:2374 ERROR: status = -3 fio: io_u error on file /mnt/scratch/racer: Read-only file system: write offset=460849152, buflen=131072 ========================================================================= In __blockdev_direct_IO, ocfs2_dio_wr_get_block is called to add unwritten extents to a list. extents are also inserted into extent tree in ocfs2_write_begin_nolock. Then another thread call fallocate to puch a hole at one of the unwritten extent. The extent at cpos was removed by ocfs2_remove_extent(). At end io worker thread, ocfs2_search_extent_list found there is no such extent at the cpos. T1 T2 T3 inode lock ... insert extents ... inode unlock ocfs2_fallocate __ocfs2_change_file_space inode lock lock ip_alloc_sem ocfs2_remove_inode_range inode ocfs2_remove_btree_range ocfs2_remove_extent ^---remove the extent at cpos 78723 ... unlock ip_alloc_sem inode unlock ocfs2_dio_end_io ocfs2_dio_end_io_write lock ip_alloc_sem ocfs2_mark_extent_written ocfs2_change_extent_flag ocfs2_search_extent_list ^---failed to find extent ... unlock ip_alloc_sem In most filesystems, fallocate is not compatible with racing with AIO+DIO, so fix it by adding to wait for all dio before fallocate/punch_hole like ext4.
CVE-2024-40947 2024-09-11 4.1 Medium
In the Linux kernel, the following vulnerability has been resolved: ima: Avoid blocking in RCU read-side critical section A panic happens in ima_match_policy: BUG: unable to handle kernel NULL pointer dereference at 0000000000000010 PGD 42f873067 P4D 0 Oops: 0000 [#1] SMP NOPTI CPU: 5 PID: 1286325 Comm: kubeletmonit.sh Kdump: loaded Tainted: P Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015 RIP: 0010:ima_match_policy+0x84/0x450 Code: 49 89 fc 41 89 cf 31 ed 89 44 24 14 eb 1c 44 39 7b 18 74 26 41 83 ff 05 74 20 48 8b 1b 48 3b 1d f2 b9 f4 00 0f 84 9c 01 00 00 <44> 85 73 10 74 ea 44 8b 6b 14 41 f6 c5 01 75 d4 41 f6 c5 02 74 0f RSP: 0018:ff71570009e07a80 EFLAGS: 00010207 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000200 RDX: ffffffffad8dc7c0 RSI: 0000000024924925 RDI: ff3e27850dea2000 RBP: 0000000000000000 R08: 0000000000000000 R09: ffffffffabfce739 R10: ff3e27810cc42400 R11: 0000000000000000 R12: ff3e2781825ef970 R13: 00000000ff3e2785 R14: 000000000000000c R15: 0000000000000001 FS: 00007f5195b51740(0000) GS:ff3e278b12d40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000010 CR3: 0000000626d24002 CR4: 0000000000361ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ima_get_action+0x22/0x30 process_measurement+0xb0/0x830 ? page_add_file_rmap+0x15/0x170 ? alloc_set_pte+0x269/0x4c0 ? prep_new_page+0x81/0x140 ? simple_xattr_get+0x75/0xa0 ? selinux_file_open+0x9d/0xf0 ima_file_check+0x64/0x90 path_openat+0x571/0x1720 do_filp_open+0x9b/0x110 ? page_counter_try_charge+0x57/0xc0 ? files_cgroup_alloc_fd+0x38/0x60 ? __alloc_fd+0xd4/0x250 ? do_sys_open+0x1bd/0x250 do_sys_open+0x1bd/0x250 do_syscall_64+0x5d/0x1d0 entry_SYSCALL_64_after_hwframe+0x65/0xca Commit c7423dbdbc9e ("ima: Handle -ESTALE returned by ima_filter_rule_match()") introduced call to ima_lsm_copy_rule within a RCU read-side critical section which contains kmalloc with GFP_KERNEL. This implies a possible sleep and violates limitations of RCU read-side critical sections on non-PREEMPT systems. Sleeping within RCU read-side critical section might cause synchronize_rcu() returning early and break RCU protection, allowing a UAF to happen. The root cause of this issue could be described as follows: | Thread A | Thread B | | |ima_match_policy | | | rcu_read_lock | |ima_lsm_update_rule | | | synchronize_rcu | | | | kmalloc(GFP_KERNEL)| | | sleep | ==> synchronize_rcu returns early | kfree(entry) | | | | entry = entry->next| ==> UAF happens and entry now becomes NULL (or could be anything). | | entry->action | ==> Accessing entry might cause panic. To fix this issue, we are converting all kmalloc that is called within RCU read-side critical section to use GFP_ATOMIC. [PM: fixed missing comment, long lines, !CONFIG_IMA_LSM_RULES case]
CVE-2024-40953 2024-09-11 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: Fix a data race on last_boosted_vcpu in kvm_vcpu_on_spin() Use {READ,WRITE}_ONCE() to access kvm->last_boosted_vcpu to ensure the loads and stores are atomic. In the extremely unlikely scenario the compiler tears the stores, it's theoretically possible for KVM to attempt to get a vCPU using an out-of-bounds index, e.g. if the write is split into multiple 8-bit stores, and is paired with a 32-bit load on a VM with 257 vCPUs: CPU0 CPU1 last_boosted_vcpu = 0xff; (last_boosted_vcpu = 0x100) last_boosted_vcpu[15:8] = 0x01; i = (last_boosted_vcpu = 0x1ff) last_boosted_vcpu[7:0] = 0x00; vcpu = kvm->vcpu_array[0x1ff]; As detected by KCSAN: BUG: KCSAN: data-race in kvm_vcpu_on_spin [kvm] / kvm_vcpu_on_spin [kvm] write to 0xffffc90025a92344 of 4 bytes by task 4340 on cpu 16: kvm_vcpu_on_spin (arch/x86/kvm/../../../virt/kvm/kvm_main.c:4112) kvm handle_pause (arch/x86/kvm/vmx/vmx.c:5929) kvm_intel vmx_handle_exit (arch/x86/kvm/vmx/vmx.c:? arch/x86/kvm/vmx/vmx.c:6606) kvm_intel vcpu_run (arch/x86/kvm/x86.c:11107 arch/x86/kvm/x86.c:11211) kvm kvm_arch_vcpu_ioctl_run (arch/x86/kvm/x86.c:?) kvm kvm_vcpu_ioctl (arch/x86/kvm/../../../virt/kvm/kvm_main.c:?) kvm __se_sys_ioctl (fs/ioctl.c:52 fs/ioctl.c:904 fs/ioctl.c:890) __x64_sys_ioctl (fs/ioctl.c:890) x64_sys_call (arch/x86/entry/syscall_64.c:33) do_syscall_64 (arch/x86/entry/common.c:?) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) read to 0xffffc90025a92344 of 4 bytes by task 4342 on cpu 4: kvm_vcpu_on_spin (arch/x86/kvm/../../../virt/kvm/kvm_main.c:4069) kvm handle_pause (arch/x86/kvm/vmx/vmx.c:5929) kvm_intel vmx_handle_exit (arch/x86/kvm/vmx/vmx.c:? arch/x86/kvm/vmx/vmx.c:6606) kvm_intel vcpu_run (arch/x86/kvm/x86.c:11107 arch/x86/kvm/x86.c:11211) kvm kvm_arch_vcpu_ioctl_run (arch/x86/kvm/x86.c:?) kvm kvm_vcpu_ioctl (arch/x86/kvm/../../../virt/kvm/kvm_main.c:?) kvm __se_sys_ioctl (fs/ioctl.c:52 fs/ioctl.c:904 fs/ioctl.c:890) __x64_sys_ioctl (fs/ioctl.c:890) x64_sys_call (arch/x86/entry/syscall_64.c:33) do_syscall_64 (arch/x86/entry/common.c:?) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) value changed: 0x00000012 -> 0x00000000
CVE-2024-40969 1 Linux 1 Linux Kernel 2024-09-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: f2fs: don't set RO when shutting down f2fs Shutdown does not check the error of thaw_super due to readonly, which causes a deadlock like below. f2fs_ioc_shutdown(F2FS_GOING_DOWN_FULLSYNC) issue_discard_thread - bdev_freeze - freeze_super - f2fs_stop_checkpoint() - f2fs_handle_critical_error - sb_start_write - set RO - waiting - bdev_thaw - thaw_super_locked - return -EINVAL, if sb_rdonly() - f2fs_stop_discard_thread -> wait for kthread_stop(discard_thread);
CVE-2024-41005 2024-09-11 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: netpoll: Fix race condition in netpoll_owner_active KCSAN detected a race condition in netpoll: BUG: KCSAN: data-race in net_rx_action / netpoll_send_skb write (marked) to 0xffff8881164168b0 of 4 bytes by interrupt on cpu 10: net_rx_action (./include/linux/netpoll.h:90 net/core/dev.c:6712 net/core/dev.c:6822) <snip> read to 0xffff8881164168b0 of 4 bytes by task 1 on cpu 2: netpoll_send_skb (net/core/netpoll.c:319 net/core/netpoll.c:345 net/core/netpoll.c:393) netpoll_send_udp (net/core/netpoll.c:?) <snip> value changed: 0x0000000a -> 0xffffffff This happens because netpoll_owner_active() needs to check if the current CPU is the owner of the lock, touching napi->poll_owner non atomically. The ->poll_owner field contains the current CPU holding the lock. Use an atomic read to check if the poll owner is the current CPU.
CVE-2022-48784 2024-09-11 4.1 Medium
In the Linux kernel, the following vulnerability has been resolved: cfg80211: fix race in netlink owner interface destruction My previous fix here to fix the deadlock left a race where the exact same deadlock (see the original commit referenced below) can still happen if cfg80211_destroy_ifaces() already runs while nl80211_netlink_notify() is still marking some interfaces as nl_owner_dead. The race happens because we have two loops here - first we dev_close() all the netdevs, and then we destroy them. If we also have two netdevs (first one need only be a wdev though) then we can find one during the first iteration, close it, and go to the second iteration -- but then find two, and try to destroy also the one we didn't close yet. Fix this by only iterating once.
CVE-2022-48842 1 Linux 1 Linux Kernel 2024-09-11 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: ice: Fix race condition during interface enslave Commit 5dbbbd01cbba83 ("ice: Avoid RTNL lock when re-creating auxiliary device") changes a process of re-creation of aux device so ice_plug_aux_dev() is called from ice_service_task() context. This unfortunately opens a race window that can result in dead-lock when interface has left LAG and immediately enters LAG again. Reproducer: ``` #!/bin/sh ip link add lag0 type bond mode 1 miimon 100 ip link set lag0 for n in {1..10}; do echo Cycle: $n ip link set ens7f0 master lag0 sleep 1 ip link set ens7f0 nomaster done ``` This results in: [20976.208697] Workqueue: ice ice_service_task [ice] [20976.213422] Call Trace: [20976.215871] __schedule+0x2d1/0x830 [20976.219364] schedule+0x35/0xa0 [20976.222510] schedule_preempt_disabled+0xa/0x10 [20976.227043] __mutex_lock.isra.7+0x310/0x420 [20976.235071] enum_all_gids_of_dev_cb+0x1c/0x100 [ib_core] [20976.251215] ib_enum_roce_netdev+0xa4/0xe0 [ib_core] [20976.256192] ib_cache_setup_one+0x33/0xa0 [ib_core] [20976.261079] ib_register_device+0x40d/0x580 [ib_core] [20976.266139] irdma_ib_register_device+0x129/0x250 [irdma] [20976.281409] irdma_probe+0x2c1/0x360 [irdma] [20976.285691] auxiliary_bus_probe+0x45/0x70 [20976.289790] really_probe+0x1f2/0x480 [20976.298509] driver_probe_device+0x49/0xc0 [20976.302609] bus_for_each_drv+0x79/0xc0 [20976.306448] __device_attach+0xdc/0x160 [20976.310286] bus_probe_device+0x9d/0xb0 [20976.314128] device_add+0x43c/0x890 [20976.321287] __auxiliary_device_add+0x43/0x60 [20976.325644] ice_plug_aux_dev+0xb2/0x100 [ice] [20976.330109] ice_service_task+0xd0c/0xed0 [ice] [20976.342591] process_one_work+0x1a7/0x360 [20976.350536] worker_thread+0x30/0x390 [20976.358128] kthread+0x10a/0x120 [20976.365547] ret_from_fork+0x1f/0x40 ... [20976.438030] task:ip state:D stack: 0 pid:213658 ppid:213627 flags:0x00004084 [20976.446469] Call Trace: [20976.448921] __schedule+0x2d1/0x830 [20976.452414] schedule+0x35/0xa0 [20976.455559] schedule_preempt_disabled+0xa/0x10 [20976.460090] __mutex_lock.isra.7+0x310/0x420 [20976.464364] device_del+0x36/0x3c0 [20976.467772] ice_unplug_aux_dev+0x1a/0x40 [ice] [20976.472313] ice_lag_event_handler+0x2a2/0x520 [ice] [20976.477288] notifier_call_chain+0x47/0x70 [20976.481386] __netdev_upper_dev_link+0x18b/0x280 [20976.489845] bond_enslave+0xe05/0x1790 [bonding] [20976.494475] do_setlink+0x336/0xf50 [20976.502517] __rtnl_newlink+0x529/0x8b0 [20976.543441] rtnl_newlink+0x43/0x60 [20976.546934] rtnetlink_rcv_msg+0x2b1/0x360 [20976.559238] netlink_rcv_skb+0x4c/0x120 [20976.563079] netlink_unicast+0x196/0x230 [20976.567005] netlink_sendmsg+0x204/0x3d0 [20976.570930] sock_sendmsg+0x4c/0x50 [20976.574423] ____sys_sendmsg+0x1eb/0x250 [20976.586807] ___sys_sendmsg+0x7c/0xc0 [20976.606353] __sys_sendmsg+0x57/0xa0 [20976.609930] do_syscall_64+0x5b/0x1a0 [20976.613598] entry_SYSCALL_64_after_hwframe+0x65/0xca 1. Command 'ip link ... set nomaster' causes that ice_plug_aux_dev() is called from ice_service_task() context, aux device is created and associated device->lock is taken. 2. Command 'ip link ... set master...' calls ice's notifier under RTNL lock and that notifier calls ice_unplug_aux_dev(). That function tries to take aux device->lock but this is already taken by ice_plug_aux_dev() in step 1 3. Later ice_plug_aux_dev() tries to take RTNL lock but this is already taken in step 2 4. Dead-lock The patch fixes this issue by following changes: - Bit ICE_FLAG_PLUG_AUX_DEV is kept to be set during ice_plug_aux_dev() call in ice_service_task() - The bit is checked in ice_clear_rdma_cap() and only if it is not set then ice_unplug_aux_dev() is called. If it is set (in other words plugging of aux device was requested and ice_plug_aux_dev() is potentially running) then the function only clears the ---truncated---