| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| StringEqual in TiXmlDeclaration::Parse in tinyxmlparser.cpp in TinyXML through 2.6.2 has a reachable assertion (and application exit) via a crafted XML document with a '\0' located after whitespace. |
| PILOS (Platform for Interactive Live-Online Seminars) is a frontend for BigBlueButton. Prior to 4.8.0, users with a local account can change their password while logged in. When doing so, all other active sessions are terminated, except for the currently active one. However, the current session’s token remains valid and is not refreshed. If an attacker has previously obtained this session token through another vulnerability, changing the password will not invalidate their access. As a result, the attacker can continue to act as the user even after the password has been changed. This vulnerability is fixed in 4.8.0. |
| In PHP version 8.1.* before 8.1.28, 8.2.* before 8.2.18, 8.3.* before 8.3.5, if a password stored with password_hash() starts with a null byte (\x00), testing a blank string as the password via password_verify() will incorrectly return true. |
| In the Linux kernel, the following vulnerability has been resolved:
dma-buf/sw-sync: don't enable IRQ from sync_print_obj()
Since commit a6aa8fca4d79 ("dma-buf/sw-sync: Reduce irqsave/irqrestore from
known context") by error replaced spin_unlock_irqrestore() with
spin_unlock_irq() for both sync_debugfs_show() and sync_print_obj() despite
sync_print_obj() is called from sync_debugfs_show(), lockdep complains
inconsistent lock state warning.
Use plain spin_{lock,unlock}() for sync_print_obj(), for
sync_debugfs_show() is already using spin_{lock,unlock}_irq(). |
| In the Linux kernel, the following vulnerability has been resolved:
serial: max3100: Lock port->lock when calling uart_handle_cts_change()
uart_handle_cts_change() has to be called with port lock taken,
Since we run it in a separate work, the lock may not be taken at
the time of running. Make sure that it's taken by explicitly doing
that. Without it we got a splat:
WARNING: CPU: 0 PID: 10 at drivers/tty/serial/serial_core.c:3491 uart_handle_cts_change+0xa6/0xb0
...
Workqueue: max3100-0 max3100_work [max3100]
RIP: 0010:uart_handle_cts_change+0xa6/0xb0
...
max3100_handlerx+0xc5/0x110 [max3100]
max3100_work+0x12a/0x340 [max3100] |
| In the Linux kernel, the following vulnerability has been resolved:
md: fix resync softlockup when bitmap size is less than array size
Is is reported that for dm-raid10, lvextend + lvchange --syncaction will
trigger following softlockup:
kernel:watchdog: BUG: soft lockup - CPU#3 stuck for 26s! [mdX_resync:6976]
CPU: 7 PID: 3588 Comm: mdX_resync Kdump: loaded Not tainted 6.9.0-rc4-next-20240419 #1
RIP: 0010:_raw_spin_unlock_irq+0x13/0x30
Call Trace:
<TASK>
md_bitmap_start_sync+0x6b/0xf0
raid10_sync_request+0x25c/0x1b40 [raid10]
md_do_sync+0x64b/0x1020
md_thread+0xa7/0x170
kthread+0xcf/0x100
ret_from_fork+0x30/0x50
ret_from_fork_asm+0x1a/0x30
And the detailed process is as follows:
md_do_sync
j = mddev->resync_min
while (j < max_sectors)
sectors = raid10_sync_request(mddev, j, &skipped)
if (!md_bitmap_start_sync(..., &sync_blocks))
// md_bitmap_start_sync set sync_blocks to 0
return sync_blocks + sectors_skippe;
// sectors = 0;
j += sectors;
// j never change
Root cause is that commit 301867b1c168 ("md/raid10: check
slab-out-of-bounds in md_bitmap_get_counter") return early from
md_bitmap_get_counter(), without setting returned blocks.
Fix this problem by always set returned blocks from
md_bitmap_get_counter"(), as it used to be.
Noted that this patch just fix the softlockup problem in kernel, the
case that bitmap size doesn't match array size still need to be fixed. |
| In the Linux kernel, the following vulnerability has been resolved:
netrom: fix possible dead-lock in nr_rt_ioctl()
syzbot loves netrom, and found a possible deadlock in nr_rt_ioctl [1]
Make sure we always acquire nr_node_list_lock before nr_node_lock(nr_node)
[1]
WARNING: possible circular locking dependency detected
6.9.0-rc7-syzkaller-02147-g654de42f3fc6 #0 Not tainted
------------------------------------------------------
syz-executor350/5129 is trying to acquire lock:
ffff8880186e2070 (&nr_node->node_lock){+...}-{2:2}, at: spin_lock_bh include/linux/spinlock.h:356 [inline]
ffff8880186e2070 (&nr_node->node_lock){+...}-{2:2}, at: nr_node_lock include/net/netrom.h:152 [inline]
ffff8880186e2070 (&nr_node->node_lock){+...}-{2:2}, at: nr_dec_obs net/netrom/nr_route.c:464 [inline]
ffff8880186e2070 (&nr_node->node_lock){+...}-{2:2}, at: nr_rt_ioctl+0x1bb/0x1090 net/netrom/nr_route.c:697
but task is already holding lock:
ffffffff8f7053b8 (nr_node_list_lock){+...}-{2:2}, at: spin_lock_bh include/linux/spinlock.h:356 [inline]
ffffffff8f7053b8 (nr_node_list_lock){+...}-{2:2}, at: nr_dec_obs net/netrom/nr_route.c:462 [inline]
ffffffff8f7053b8 (nr_node_list_lock){+...}-{2:2}, at: nr_rt_ioctl+0x10a/0x1090 net/netrom/nr_route.c:697
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (nr_node_list_lock){+...}-{2:2}:
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5754
__raw_spin_lock_bh include/linux/spinlock_api_smp.h:126 [inline]
_raw_spin_lock_bh+0x35/0x50 kernel/locking/spinlock.c:178
spin_lock_bh include/linux/spinlock.h:356 [inline]
nr_remove_node net/netrom/nr_route.c:299 [inline]
nr_del_node+0x4b4/0x820 net/netrom/nr_route.c:355
nr_rt_ioctl+0xa95/0x1090 net/netrom/nr_route.c:683
sock_do_ioctl+0x158/0x460 net/socket.c:1222
sock_ioctl+0x629/0x8e0 net/socket.c:1341
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:890
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #0 (&nr_node->node_lock){+...}-{2:2}:
check_prev_add kernel/locking/lockdep.c:3134 [inline]
check_prevs_add kernel/locking/lockdep.c:3253 [inline]
validate_chain+0x18cb/0x58e0 kernel/locking/lockdep.c:3869
__lock_acquire+0x1346/0x1fd0 kernel/locking/lockdep.c:5137
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5754
__raw_spin_lock_bh include/linux/spinlock_api_smp.h:126 [inline]
_raw_spin_lock_bh+0x35/0x50 kernel/locking/spinlock.c:178
spin_lock_bh include/linux/spinlock.h:356 [inline]
nr_node_lock include/net/netrom.h:152 [inline]
nr_dec_obs net/netrom/nr_route.c:464 [inline]
nr_rt_ioctl+0x1bb/0x1090 net/netrom/nr_route.c:697
sock_do_ioctl+0x158/0x460 net/socket.c:1222
sock_ioctl+0x629/0x8e0 net/socket.c:1341
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:890
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(nr_node_list_lock);
lock(&nr_node->node_lock);
lock(nr_node_list_lock);
lock(&nr_node->node_lock);
*** DEADLOCK ***
1 lock held by syz-executor350/5129:
#0: ffffffff8f7053b8 (nr_node_list_lock){+...}-{2:2}, at: spin_lock_bh include/linux/spinlock.h:356 [inline]
#0: ffffffff8f7053b8 (nr_node_list_lock){+...}-{2:2}, at: nr_dec_obs net/netrom/nr_route.c:462 [inline]
#0: ffffffff8f70
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential hang in nilfs_detach_log_writer()
Syzbot has reported a potential hang in nilfs_detach_log_writer() called
during nilfs2 unmount.
Analysis revealed that this is because nilfs_segctor_sync(), which
synchronizes with the log writer thread, can be called after
nilfs_segctor_destroy() terminates that thread, as shown in the call trace
below:
nilfs_detach_log_writer
nilfs_segctor_destroy
nilfs_segctor_kill_thread --> Shut down log writer thread
flush_work
nilfs_iput_work_func
nilfs_dispose_list
iput
nilfs_evict_inode
nilfs_transaction_commit
nilfs_construct_segment (if inode needs sync)
nilfs_segctor_sync --> Attempt to synchronize with
log writer thread
*** DEADLOCK ***
Fix this issue by changing nilfs_segctor_sync() so that the log writer
thread returns normally without synchronizing after it terminates, and by
forcing tasks that are already waiting to complete once after the thread
terminates.
The skipped inode metadata flushout will then be processed together in the
subsequent cleanup work in nilfs_segctor_destroy(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: fix overwriting ct original tuple for ICMPv6
OVS_PACKET_CMD_EXECUTE has 3 main attributes:
- OVS_PACKET_ATTR_KEY - Packet metadata in a netlink format.
- OVS_PACKET_ATTR_PACKET - Binary packet content.
- OVS_PACKET_ATTR_ACTIONS - Actions to execute on the packet.
OVS_PACKET_ATTR_KEY is parsed first to populate sw_flow_key structure
with the metadata like conntrack state, input port, recirculation id,
etc. Then the packet itself gets parsed to populate the rest of the
keys from the packet headers.
Whenever the packet parsing code starts parsing the ICMPv6 header, it
first zeroes out fields in the key corresponding to Neighbor Discovery
information even if it is not an ND packet.
It is an 'ipv6.nd' field. However, the 'ipv6' is a union that shares
the space between 'nd' and 'ct_orig' that holds the original tuple
conntrack metadata parsed from the OVS_PACKET_ATTR_KEY.
ND packets should not normally have conntrack state, so it's fine to
share the space, but normal ICMPv6 Echo packets or maybe other types of
ICMPv6 can have the state attached and it should not be overwritten.
The issue results in all but the last 4 bytes of the destination
address being wiped from the original conntrack tuple leading to
incorrect packet matching and potentially executing wrong actions
in case this packet recirculates within the datapath or goes back
to userspace.
ND fields should not be accessed in non-ND packets, so not clearing
them should be fine. Executing memset() only for actual ND packets to
avoid the issue.
Initializing the whole thing before parsing is needed because ND packet
may not contain all the options.
The issue only affects the OVS_PACKET_CMD_EXECUTE path and doesn't
affect packets entering OVS datapath from network interfaces, because
in this case CT metadata is populated from skb after the packet is
already parsed. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: Add 0 size check to mtk_drm_gem_obj
Add a check to mtk_drm_gem_init if we attempt to allocate a GEM object
of 0 bytes. Currently, no such check exists and the kernel will panic if
a userspace application attempts to allocate a 0x0 GBM buffer.
Tested by attempting to allocate a 0x0 GBM buffer on an MT8188 and
verifying that we now return EINVAL. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nfnetlink_queue: acquire rcu_read_lock() in instance_destroy_rcu()
syzbot reported that nf_reinject() could be called without rcu_read_lock() :
WARNING: suspicious RCU usage
6.9.0-rc7-syzkaller-02060-g5c1672705a1a #0 Not tainted
net/netfilter/nfnetlink_queue.c:263 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
2 locks held by syz-executor.4/13427:
#0: ffffffff8e334f60 (rcu_callback){....}-{0:0}, at: rcu_lock_acquire include/linux/rcupdate.h:329 [inline]
#0: ffffffff8e334f60 (rcu_callback){....}-{0:0}, at: rcu_do_batch kernel/rcu/tree.c:2190 [inline]
#0: ffffffff8e334f60 (rcu_callback){....}-{0:0}, at: rcu_core+0xa86/0x1830 kernel/rcu/tree.c:2471
#1: ffff88801ca92958 (&inst->lock){+.-.}-{2:2}, at: spin_lock_bh include/linux/spinlock.h:356 [inline]
#1: ffff88801ca92958 (&inst->lock){+.-.}-{2:2}, at: nfqnl_flush net/netfilter/nfnetlink_queue.c:405 [inline]
#1: ffff88801ca92958 (&inst->lock){+.-.}-{2:2}, at: instance_destroy_rcu+0x30/0x220 net/netfilter/nfnetlink_queue.c:172
stack backtrace:
CPU: 0 PID: 13427 Comm: syz-executor.4 Not tainted 6.9.0-rc7-syzkaller-02060-g5c1672705a1a #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
lockdep_rcu_suspicious+0x221/0x340 kernel/locking/lockdep.c:6712
nf_reinject net/netfilter/nfnetlink_queue.c:323 [inline]
nfqnl_reinject+0x6ec/0x1120 net/netfilter/nfnetlink_queue.c:397
nfqnl_flush net/netfilter/nfnetlink_queue.c:410 [inline]
instance_destroy_rcu+0x1ae/0x220 net/netfilter/nfnetlink_queue.c:172
rcu_do_batch kernel/rcu/tree.c:2196 [inline]
rcu_core+0xafd/0x1830 kernel/rcu/tree.c:2471
handle_softirqs+0x2d6/0x990 kernel/softirq.c:554
__do_softirq kernel/softirq.c:588 [inline]
invoke_softirq kernel/softirq.c:428 [inline]
__irq_exit_rcu+0xf4/0x1c0 kernel/softirq.c:637
irq_exit_rcu+0x9/0x30 kernel/softirq.c:649
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1043 [inline]
sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1043
</IRQ>
<TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
keys: Fix overwrite of key expiration on instantiation
The expiry time of a key is unconditionally overwritten during
instantiation, defaulting to turn it permanent. This causes a problem
for DNS resolution as the expiration set by user-space is overwritten to
TIME64_MAX, disabling further DNS updates. Fix this by restoring the
condition that key_set_expiry is only called when the pre-parser sets a
specific expiry. |
| This issue was addressed with improved validation of symlinks. This issue is fixed in macOS Sonoma 14.6. An app may be able to access protected user data. |
| In the Linux kernel, the following vulnerability has been resolved:
r8169: fix LED-related deadlock on module removal
Binding devm_led_classdev_register() to the netdev is problematic
because on module removal we get a RTNL-related deadlock. Fix this
by avoiding the device-managed LED functions.
Note: We can safely call led_classdev_unregister() for a LED even
if registering it failed, because led_classdev_unregister() detects
this and is a no-op in this case. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Prevent deadlock while disabling aRFS
When disabling aRFS under the `priv->state_lock`, any scheduled
aRFS works are canceled using the `cancel_work_sync` function,
which waits for the work to end if it has already started.
However, while waiting for the work handler, the handler will
try to acquire the `state_lock` which is already acquired.
The worker acquires the lock to delete the rules if the state
is down, which is not the worker's responsibility since
disabling aRFS deletes the rules.
Add an aRFS state variable, which indicates whether the aRFS is
enabled and prevent adding rules when the aRFS is disabled.
Kernel log:
======================================================
WARNING: possible circular locking dependency detected
6.7.0-rc4_net_next_mlx5_5483eb2 #1 Tainted: G I
------------------------------------------------------
ethtool/386089 is trying to acquire lock:
ffff88810f21ce68 ((work_completion)(&rule->arfs_work)){+.+.}-{0:0}, at: __flush_work+0x74/0x4e0
but task is already holding lock:
ffff8884a1808cc0 (&priv->state_lock){+.+.}-{3:3}, at: mlx5e_ethtool_set_channels+0x53/0x200 [mlx5_core]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&priv->state_lock){+.+.}-{3:3}:
__mutex_lock+0x80/0xc90
arfs_handle_work+0x4b/0x3b0 [mlx5_core]
process_one_work+0x1dc/0x4a0
worker_thread+0x1bf/0x3c0
kthread+0xd7/0x100
ret_from_fork+0x2d/0x50
ret_from_fork_asm+0x11/0x20
-> #0 ((work_completion)(&rule->arfs_work)){+.+.}-{0:0}:
__lock_acquire+0x17b4/0x2c80
lock_acquire+0xd0/0x2b0
__flush_work+0x7a/0x4e0
__cancel_work_timer+0x131/0x1c0
arfs_del_rules+0x143/0x1e0 [mlx5_core]
mlx5e_arfs_disable+0x1b/0x30 [mlx5_core]
mlx5e_ethtool_set_channels+0xcb/0x200 [mlx5_core]
ethnl_set_channels+0x28f/0x3b0
ethnl_default_set_doit+0xec/0x240
genl_family_rcv_msg_doit+0xd0/0x120
genl_rcv_msg+0x188/0x2c0
netlink_rcv_skb+0x54/0x100
genl_rcv+0x24/0x40
netlink_unicast+0x1a1/0x270
netlink_sendmsg+0x214/0x460
__sock_sendmsg+0x38/0x60
__sys_sendto+0x113/0x170
__x64_sys_sendto+0x20/0x30
do_syscall_64+0x40/0xe0
entry_SYSCALL_64_after_hwframe+0x46/0x4e
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&priv->state_lock);
lock((work_completion)(&rule->arfs_work));
lock(&priv->state_lock);
lock((work_completion)(&rule->arfs_work));
*** DEADLOCK ***
3 locks held by ethtool/386089:
#0: ffffffff82ea7210 (cb_lock){++++}-{3:3}, at: genl_rcv+0x15/0x40
#1: ffffffff82e94c88 (rtnl_mutex){+.+.}-{3:3}, at: ethnl_default_set_doit+0xd3/0x240
#2: ffff8884a1808cc0 (&priv->state_lock){+.+.}-{3:3}, at: mlx5e_ethtool_set_channels+0x53/0x200 [mlx5_core]
stack backtrace:
CPU: 15 PID: 386089 Comm: ethtool Tainted: G I 6.7.0-rc4_net_next_mlx5_5483eb2 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x60/0xa0
check_noncircular+0x144/0x160
__lock_acquire+0x17b4/0x2c80
lock_acquire+0xd0/0x2b0
? __flush_work+0x74/0x4e0
? save_trace+0x3e/0x360
? __flush_work+0x74/0x4e0
__flush_work+0x7a/0x4e0
? __flush_work+0x74/0x4e0
? __lock_acquire+0xa78/0x2c80
? lock_acquire+0xd0/0x2b0
? mark_held_locks+0x49/0x70
__cancel_work_timer+0x131/0x1c0
? mark_held_locks+0x49/0x70
arfs_del_rules+0x143/0x1e0 [mlx5_core]
mlx5e_arfs_disable+0x1b/0x30 [mlx5_core]
mlx5e_ethtool_set_channels+0xcb/0x200 [mlx5_core]
ethnl_set_channels+0x28f/0x3b0
ethnl_default_set_doit+0xec/0x240
genl_family_rcv_msg_doit+0xd0/0x120
genl_rcv_msg+0x188/0x2c0
? ethn
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: Fix mirred deadlock on device recursion
When the mirred action is used on a classful egress qdisc and a packet is
mirrored or redirected to self we hit a qdisc lock deadlock.
See trace below.
[..... other info removed for brevity....]
[ 82.890906]
[ 82.890906] ============================================
[ 82.890906] WARNING: possible recursive locking detected
[ 82.890906] 6.8.0-05205-g77fadd89fe2d-dirty #213 Tainted: G W
[ 82.890906] --------------------------------------------
[ 82.890906] ping/418 is trying to acquire lock:
[ 82.890906] ffff888006994110 (&sch->q.lock){+.-.}-{3:3}, at:
__dev_queue_xmit+0x1778/0x3550
[ 82.890906]
[ 82.890906] but task is already holding lock:
[ 82.890906] ffff888006994110 (&sch->q.lock){+.-.}-{3:3}, at:
__dev_queue_xmit+0x1778/0x3550
[ 82.890906]
[ 82.890906] other info that might help us debug this:
[ 82.890906] Possible unsafe locking scenario:
[ 82.890906]
[ 82.890906] CPU0
[ 82.890906] ----
[ 82.890906] lock(&sch->q.lock);
[ 82.890906] lock(&sch->q.lock);
[ 82.890906]
[ 82.890906] *** DEADLOCK ***
[ 82.890906]
[..... other info removed for brevity....]
Example setup (eth0->eth0) to recreate
tc qdisc add dev eth0 root handle 1: htb default 30
tc filter add dev eth0 handle 1: protocol ip prio 2 matchall \
action mirred egress redirect dev eth0
Another example(eth0->eth1->eth0) to recreate
tc qdisc add dev eth0 root handle 1: htb default 30
tc filter add dev eth0 handle 1: protocol ip prio 2 matchall \
action mirred egress redirect dev eth1
tc qdisc add dev eth1 root handle 1: htb default 30
tc filter add dev eth1 handle 1: protocol ip prio 2 matchall \
action mirred egress redirect dev eth0
We fix this by adding an owner field (CPU id) to struct Qdisc set after
root qdisc is entered. When the softirq enters it a second time, if the
qdisc owner is the same CPU, the packet is dropped to break the loop. |
| In the Linux kernel, the following vulnerability has been resolved:
interconnect: Don't access req_list while it's being manipulated
The icc_lock mutex was split into separate icc_lock and icc_bw_lock
mutexes in [1] to avoid lockdep splats. However, this didn't adequately
protect access to icc_node::req_list.
The icc_set_bw() function will eventually iterate over req_list while
only holding icc_bw_lock, but req_list can be modified while only
holding icc_lock. This causes races between icc_set_bw(), of_icc_get(),
and icc_put().
Example A:
CPU0 CPU1
---- ----
icc_set_bw(path_a)
mutex_lock(&icc_bw_lock);
icc_put(path_b)
mutex_lock(&icc_lock);
aggregate_requests()
hlist_for_each_entry(r, ...
hlist_del(...
<r = invalid pointer>
Example B:
CPU0 CPU1
---- ----
icc_set_bw(path_a)
mutex_lock(&icc_bw_lock);
path_b = of_icc_get()
of_icc_get_by_index()
mutex_lock(&icc_lock);
path_find()
path_init()
aggregate_requests()
hlist_for_each_entry(r, ...
hlist_add_head(...
<r = invalid pointer>
Fix this by ensuring icc_bw_lock is always held before manipulating
icc_node::req_list. The additional places icc_bw_lock is held don't
perform any memory allocations, so we should still be safe from the
original lockdep splats that motivated the separate locks.
[1] commit af42269c3523 ("interconnect: Fix locking for runpm vs reclaim") |
| In the Linux kernel, the following vulnerability has been resolved:
clk: Get runtime PM before walking tree for clk_summary
Similar to the previous commit, we should make sure that all devices are
runtime resumed before printing the clk_summary through debugfs. Failure
to do so would result in a deadlock if the thread is resuming a device
to print clk state and that device is also runtime resuming in another
thread, e.g the screen is turning on and the display driver is starting
up. We remove the calls to clk_pm_runtime_{get,put}() in this path
because they're superfluous now that we know the devices are runtime
resumed. This also squashes a bug where the return value of
clk_pm_runtime_get() wasn't checked, leading to an RPM count underflow
on error paths. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: mediatek: Do a runtime PM get on controllers during probe
mt8183-mfgcfg has a mutual dependency with genpd during the probing
stage, which leads to a deadlock in the following call stack:
CPU0: genpd_lock --> clk_prepare_lock
genpd_power_off_work_fn()
genpd_lock()
generic_pm_domain::power_off()
clk_unprepare()
clk_prepare_lock()
CPU1: clk_prepare_lock --> genpd_lock
clk_register()
__clk_core_init()
clk_prepare_lock()
clk_pm_runtime_get()
genpd_lock()
Do a runtime PM get at the probe function to make sure clk_register()
won't acquire the genpd lock. Instead of only modifying mt8183-mfgcfg,
do this on all mediatek clock controller probings because we don't
believe this would cause any regression.
Verified on MT8183 and MT8192 Chromebooks. |
| In the Linux kernel, the following vulnerability has been resolved:
serial/pmac_zilog: Remove flawed mitigation for rx irq flood
The mitigation was intended to stop the irq completely. That may be
better than a hard lock-up but it turns out that you get a crash anyway
if you're using pmac_zilog as a serial console:
ttyPZ0: pmz: rx irq flood !
BUG: spinlock recursion on CPU#0, swapper/0
That's because the pr_err() call in pmz_receive_chars() results in
pmz_console_write() attempting to lock a spinlock already locked in
pmz_interrupt(). With CONFIG_DEBUG_SPINLOCK=y, this produces a fatal
BUG splat. The spinlock in question is the one in struct uart_port.
Even when it's not fatal, the serial port rx function ceases to work.
Also, the iteration limit doesn't play nicely with QEMU, as can be
seen in the bug report linked below.
A web search for other reports of the error message "pmz: rx irq flood"
didn't produce anything. So I don't think this code is needed any more.
Remove it. |