| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
iio: light: bh1745: fix information leak in triggered buffer
The 'scan' local struct is used to push data to user space from a
triggered buffer, but it does not set values for inactive channels, as
it only uses iio_for_each_active_channel() to assign new values.
Initialize the struct to zero before using it to avoid pushing
uninitialized information to userspace. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ti-ads1119: fix information leak in triggered buffer
The 'scan' local struct is used to push data to user space from a
triggered buffer, but it has a hole between the sample (unsigned int)
and the timestamp. This hole is never initialized.
Initialize the struct to zero before using it to avoid pushing
uninitialized information to userspace. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: ptrace: fix partial SETREGSET for NT_ARM_FPMR
Currently fpmr_set() doesn't initialize the temporary 'fpmr' variable,
and a SETREGSET call with a length of zero will leave this
uninitialized. Consequently an arbitrary value will be written back to
target->thread.uw.fpmr, potentially leaking up to 64 bits of memory from
the kernel stack. The read is limited to a specific slot on the stack,
and the issue does not provide a write mechanism.
Fix this by initializing the temporary value before copying the regset
from userspace, as for other regsets (e.g. NT_PRSTATUS, NT_PRFPREG,
NT_ARM_SYSTEM_CALL). In the case of a zero-length write, the existing
contents of FPMR will be retained.
Before this patch:
| # ./fpmr-test
| Attempting to write NT_ARM_FPMR::fpmr = 0x900d900d900d900d
| SETREGSET(nt=0x40e, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0x900d900d900d900d
|
| Attempting to write NT_ARM_FPMR (zero length)
| SETREGSET(nt=0x40e, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0xffff800083963d50
After this patch:
| # ./fpmr-test
| Attempting to write NT_ARM_FPMR::fpmr = 0x900d900d900d900d
| SETREGSET(nt=0x40e, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0x900d900d900d900d
|
| Attempting to write NT_ARM_FPMR (zero length)
| SETREGSET(nt=0x40e, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0x900d900d900d900d |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: ptrace: fix partial SETREGSET for NT_ARM_POE
Currently poe_set() doesn't initialize the temporary 'ctrl' variable,
and a SETREGSET call with a length of zero will leave this
uninitialized. Consequently an arbitrary value will be written back to
target->thread.por_el0, potentially leaking up to 64 bits of memory from
the kernel stack. The read is limited to a specific slot on the stack,
and the issue does not provide a write mechanism.
Fix this by initializing the temporary value before copying the regset
from userspace, as for other regsets (e.g. NT_PRSTATUS, NT_PRFPREG,
NT_ARM_SYSTEM_CALL). In the case of a zero-length write, the existing
contents of POR_EL1 will be retained.
Before this patch:
| # ./poe-test
| Attempting to write NT_ARM_POE::por_el0 = 0x900d900d900d900d
| SETREGSET(nt=0x40f, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0x900d900d900d900d
|
| Attempting to write NT_ARM_POE (zero length)
| SETREGSET(nt=0x40f, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0xffff8000839c3d50
After this patch:
| # ./poe-test
| Attempting to write NT_ARM_POE::por_el0 = 0x900d900d900d900d
| SETREGSET(nt=0x40f, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0x900d900d900d900d
|
| Attempting to write NT_ARM_POE (zero length)
| SETREGSET(nt=0x40f, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0x900d900d900d900d |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: da9121: Fix uninit-value in da9121_assign_chip_model()
KASAN report slab-out-of-bounds in __regmap_init as follows:
BUG: KASAN: slab-out-of-bounds in __regmap_init drivers/base/regmap/regmap.c:841
Read of size 1 at addr ffff88803678cdf1 by task xrun/9137
CPU: 0 PID: 9137 Comm: xrun Tainted: G W 5.18.0-rc2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0xe8/0x15a lib/dump_stack.c:88
print_report.cold+0xcd/0x69b mm/kasan/report.c:313
kasan_report+0x8e/0xc0 mm/kasan/report.c:491
__regmap_init+0x4540/0x4ba0 drivers/base/regmap/regmap.c:841
__devm_regmap_init+0x7a/0x100 drivers/base/regmap/regmap.c:1266
__devm_regmap_init_i2c+0x65/0x80 drivers/base/regmap/regmap-i2c.c:394
da9121_i2c_probe+0x386/0x6d1 drivers/regulator/da9121-regulator.c:1039
i2c_device_probe+0x959/0xac0 drivers/i2c/i2c-core-base.c:563
This happend when da9121 device is probe by da9121_i2c_id, but with
invalid dts. Thus, chip->subvariant_id is set to -EINVAL, and later
da9121_assign_chip_model() will access 'regmap' without init it.
Fix it by return -EINVAL from da9121_assign_chip_model() if
'chip->subvariant_id' is invalid. |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: check attribute length for bearer name
syzbot reported uninit-value:
=====================================================
BUG: KMSAN: uninit-value in string_nocheck lib/vsprintf.c:644 [inline]
BUG: KMSAN: uninit-value in string+0x4f9/0x6f0 lib/vsprintf.c:725
string_nocheck lib/vsprintf.c:644 [inline]
string+0x4f9/0x6f0 lib/vsprintf.c:725
vsnprintf+0x2222/0x3650 lib/vsprintf.c:2806
vprintk_store+0x537/0x2150 kernel/printk/printk.c:2158
vprintk_emit+0x28b/0xab0 kernel/printk/printk.c:2256
vprintk_default+0x86/0xa0 kernel/printk/printk.c:2283
vprintk+0x15f/0x180 kernel/printk/printk_safe.c:50
_printk+0x18d/0x1cf kernel/printk/printk.c:2293
tipc_enable_bearer net/tipc/bearer.c:371 [inline]
__tipc_nl_bearer_enable+0x2022/0x22a0 net/tipc/bearer.c:1033
tipc_nl_bearer_enable+0x6c/0xb0 net/tipc/bearer.c:1042
genl_family_rcv_msg_doit net/netlink/genetlink.c:731 [inline]
- Do sanity check the attribute length for TIPC_NLA_BEARER_NAME.
- Do not use 'illegal name' in printing message. |
| In the Linux kernel, the following vulnerability has been resolved:
ath9k_htc: fix uninit value bugs
Syzbot reported 2 KMSAN bugs in ath9k. All of them are caused by missing
field initialization.
In htc_connect_service() svc_meta_len and pad are not initialized. Based
on code it looks like in current skb there is no service data, so simply
initialize svc_meta_len to 0.
htc_issue_send() does not initialize htc_frame_hdr::control array. Based
on firmware code, it will initialize it by itself, so simply zero whole
array to make KMSAN happy
Fail logs:
BUG: KMSAN: kernel-usb-infoleak in usb_submit_urb+0x6c1/0x2aa0 drivers/usb/core/urb.c:430
usb_submit_urb+0x6c1/0x2aa0 drivers/usb/core/urb.c:430
hif_usb_send_regout drivers/net/wireless/ath/ath9k/hif_usb.c:127 [inline]
hif_usb_send+0x5f0/0x16f0 drivers/net/wireless/ath/ath9k/hif_usb.c:479
htc_issue_send drivers/net/wireless/ath/ath9k/htc_hst.c:34 [inline]
htc_connect_service+0x143e/0x1960 drivers/net/wireless/ath/ath9k/htc_hst.c:275
...
Uninit was created at:
slab_post_alloc_hook mm/slab.h:524 [inline]
slab_alloc_node mm/slub.c:3251 [inline]
__kmalloc_node_track_caller+0xe0c/0x1510 mm/slub.c:4974
kmalloc_reserve net/core/skbuff.c:354 [inline]
__alloc_skb+0x545/0xf90 net/core/skbuff.c:426
alloc_skb include/linux/skbuff.h:1126 [inline]
htc_connect_service+0x1029/0x1960 drivers/net/wireless/ath/ath9k/htc_hst.c:258
...
Bytes 4-7 of 18 are uninitialized
Memory access of size 18 starts at ffff888027377e00
BUG: KMSAN: kernel-usb-infoleak in usb_submit_urb+0x6c1/0x2aa0 drivers/usb/core/urb.c:430
usb_submit_urb+0x6c1/0x2aa0 drivers/usb/core/urb.c:430
hif_usb_send_regout drivers/net/wireless/ath/ath9k/hif_usb.c:127 [inline]
hif_usb_send+0x5f0/0x16f0 drivers/net/wireless/ath/ath9k/hif_usb.c:479
htc_issue_send drivers/net/wireless/ath/ath9k/htc_hst.c:34 [inline]
htc_connect_service+0x143e/0x1960 drivers/net/wireless/ath/ath9k/htc_hst.c:275
...
Uninit was created at:
slab_post_alloc_hook mm/slab.h:524 [inline]
slab_alloc_node mm/slub.c:3251 [inline]
__kmalloc_node_track_caller+0xe0c/0x1510 mm/slub.c:4974
kmalloc_reserve net/core/skbuff.c:354 [inline]
__alloc_skb+0x545/0xf90 net/core/skbuff.c:426
alloc_skb include/linux/skbuff.h:1126 [inline]
htc_connect_service+0x1029/0x1960 drivers/net/wireless/ath/ath9k/htc_hst.c:258
...
Bytes 16-17 of 18 are uninitialized
Memory access of size 18 starts at ffff888027377e00 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: use memset avoid memory leaks
Use memset to initialize structs to prevent memory leaks
in l2cap_ecred_connect |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: fix the msg->req tlv len check in tipc_nl_compat_name_table_dump_header
This is a follow-up for commit 974cb0e3e7c9 ("tipc: fix uninit-value
in tipc_nl_compat_name_table_dump") where it should have type casted
sizeof(..) to int to work when TLV_GET_DATA_LEN() returns a negative
value.
syzbot reported a call trace because of it:
BUG: KMSAN: uninit-value in ...
tipc_nl_compat_name_table_dump+0x841/0xea0 net/tipc/netlink_compat.c:934
__tipc_nl_compat_dumpit+0xab2/0x1320 net/tipc/netlink_compat.c:238
tipc_nl_compat_dumpit+0x991/0xb50 net/tipc/netlink_compat.c:321
tipc_nl_compat_recv+0xb6e/0x1640 net/tipc/netlink_compat.c:1324
genl_family_rcv_msg_doit net/netlink/genetlink.c:731 [inline]
genl_family_rcv_msg net/netlink/genetlink.c:775 [inline]
genl_rcv_msg+0x103f/0x1260 net/netlink/genetlink.c:792
netlink_rcv_skb+0x3a5/0x6c0 net/netlink/af_netlink.c:2501
genl_rcv+0x3c/0x50 net/netlink/genetlink.c:803
netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline]
netlink_unicast+0xf3b/0x1270 net/netlink/af_netlink.c:1345
netlink_sendmsg+0x1288/0x1440 net/netlink/af_netlink.c:1921
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline] |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: j1939_send_one(): fix missing CAN header initialization
The read access to struct canxl_frame::len inside of a j1939 created
skbuff revealed a missing initialization of reserved and later filled
elements in struct can_frame.
This patch initializes the 8 byte CAN header with zero. |
| An issue was discovered in the ash crate before 0.33.1 for Rust. util::read_spv may read from uninitialized memory locations. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix kernel crash when devlink reload during initialization
The devlink reload process will access the hardware resources,
but the register operation is done before the hardware is initialized.
So, processing the devlink reload during initialization may lead to kernel
crash.
This patch fixes this by registering the devlink after
hardware initialization. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix kernel crash when devlink reload during pf initialization
The devlink reload process will access the hardware resources,
but the register operation is done before the hardware is initialized.
So, processing the devlink reload during initialization may lead to kernel
crash. This patch fixes this by taking devl_lock during initialization. |
| The libtiff-4.0.3-35.amzn2.0.1 package for LibTIFF on Amazon Linux 2 allows attackers to cause a denial of service (application crash), a different vulnerability than CVE-2022-0562. When processing a malicious TIFF file, an invalid range may be passed as an argument to the memset() function within TIFFFetchStripThing() in tif_dirread.c. This will cause TIFFFetchStripThing() to segfault after use of an uninitialized resource. |
| In the Linux kernel, the following vulnerability has been resolved:
leds: an30259a: Use devm_mutex_init() for mutex initialization
In this driver LEDs are registered using devm_led_classdev_register()
so they are automatically unregistered after module's remove() is done.
led_classdev_unregister() calls module's led_set_brightness() to turn off
the LEDs and that callback uses mutex which was destroyed already
in module's remove() so use devm API instead. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: Check num_codecs is not zero to avoid panic during probe
Following commit 13f58267cda3 ("ASoC: soc.h: don't create dummy
Component via COMP_DUMMY()"), COMP_DUMMY() became an array with zero
length, and only gets populated with the dummy struct after the card is
registered. Since the sound card driver's probe happens before the card
registration, accessing any of the members of a dummy component during
probe will result in undefined behavior.
This can be observed in the mt8188 and mt8195 machine sound drivers. By
omitting a dai link subnode in the sound card's node in the Devicetree,
the default uninitialized dummy codec is used, and when its dai_name
pointer gets passed to strcmp() it results in a null pointer dereference
and a kernel panic.
In addition to that, set_card_codec_info() in the generic helpers file,
mtk-soundcard-driver.c, will populate a dai link with a dummy codec when
a dai link node is present in DT but with no codec property.
The result is that at probe time, a dummy codec can either be
uninitialized with num_codecs = 0, or be an initialized dummy codec,
with num_codecs = 1 and dai_name = "snd-soc-dummy-dai". In order to
accommodate for both situations, check that num_codecs is not zero
before accessing the codecs' fields but still check for the codec's dai
name against "snd-soc-dummy-dai" as needed.
While at it, also drop the check that dai_name is not null in the mt8192
driver, introduced in commit 4d4e1b6319e5 ("ASoC: mediatek: mt8192:
Check existence of dai_name before dereferencing"), as it is actually
redundant given the preceding num_codecs != 0 check. |
| In the Linux kernel, the following vulnerability has been resolved:
net: txgbe: initialize num_q_vectors for MSI/INTx interrupts
When using MSI/INTx interrupts, wx->num_q_vectors is uninitialized.
Thus there will be kernel panic in wx_alloc_q_vectors() to allocate
queue vectors. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix KASAN error in LAG NETDEV_UNREGISTER handler
Currently, the same handler is called for both a NETDEV_BONDING_INFO
LAG unlink notification as for a NETDEV_UNREGISTER call. This is
causing a problem though, since the netdev_notifier_info passed has
a different structure depending on which event is passed. The problem
manifests as a call trace from a BUG: KASAN stack-out-of-bounds error.
Fix this by creating a handler specific to NETDEV_UNREGISTER that only
is passed valid elements in the netdev_notifier_info struct for the
NETDEV_UNREGISTER event.
Also included is the removal of an unbalanced dev_put on the peer_netdev
and related braces. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/a4xx: fix error handling in a4xx_gpu_init()
This code returns 1 on error instead of a negative error. It leads to
an Oops in the caller. A second problem is that the check for
"if (ret != -ENODATA)" cannot be true because "ret" is set to 1. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: xt_IDLETIMER: fix panic that occurs when timer_type has garbage value
Currently, when the rule related to IDLETIMER is added, idletimer_tg timer
structure is initialized by kmalloc on executing idletimer_tg_create
function. However, in this process timer->timer_type is not defined to
a specific value. Thus, timer->timer_type has garbage value and it occurs
kernel panic. So, this commit fixes the panic by initializing
timer->timer_type using kzalloc instead of kmalloc.
Test commands:
# iptables -A OUTPUT -j IDLETIMER --timeout 1 --label test
$ cat /sys/class/xt_idletimer/timers/test
Killed
Splat looks like:
BUG: KASAN: user-memory-access in alarm_expires_remaining+0x49/0x70
Read of size 8 at addr 0000002e8c7bc4c8 by task cat/917
CPU: 12 PID: 917 Comm: cat Not tainted 5.14.0+ #3 79940a339f71eb14fc81aee1757a20d5bf13eb0e
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
dump_stack_lvl+0x6e/0x9c
kasan_report.cold+0x112/0x117
? alarm_expires_remaining+0x49/0x70
__asan_load8+0x86/0xb0
alarm_expires_remaining+0x49/0x70
idletimer_tg_show+0xe5/0x19b [xt_IDLETIMER 11219304af9316a21bee5ba9d58f76a6b9bccc6d]
dev_attr_show+0x3c/0x60
sysfs_kf_seq_show+0x11d/0x1f0
? device_remove_bin_file+0x20/0x20
kernfs_seq_show+0xa4/0xb0
seq_read_iter+0x29c/0x750
kernfs_fop_read_iter+0x25a/0x2c0
? __fsnotify_parent+0x3d1/0x570
? iov_iter_init+0x70/0x90
new_sync_read+0x2a7/0x3d0
? __x64_sys_llseek+0x230/0x230
? rw_verify_area+0x81/0x150
vfs_read+0x17b/0x240
ksys_read+0xd9/0x180
? vfs_write+0x460/0x460
? do_syscall_64+0x16/0xc0
? lockdep_hardirqs_on+0x79/0x120
__x64_sys_read+0x43/0x50
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f0cdc819142
Code: c0 e9 c2 fe ff ff 50 48 8d 3d 3a ca 0a 00 e8 f5 19 02 00 0f 1f 44 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 0f 05 <48> 3d 00 f0 ff ff 77 56 c3 0f 1f 44 00 00 48 83 ec 28 48 89 54 24
RSP: 002b:00007fff28eee5b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
RAX: ffffffffffffffda RBX: 0000000000020000 RCX: 00007f0cdc819142
RDX: 0000000000020000 RSI: 00007f0cdc032000 RDI: 0000000000000003
RBP: 00007f0cdc032000 R08: 00007f0cdc031010 R09: 0000000000000000
R10: 0000000000000022 R11: 0000000000000246 R12: 00005607e9ee31f0
R13: 0000000000000003 R14: 0000000000020000 R15: 0000000000020000 |