CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
rapidio: fix possible name leaks when rio_add_device() fails
Patch series "rapidio: fix three possible memory leaks".
This patchset fixes three name leaks in error handling.
- patch #1 fixes two name leaks while rio_add_device() fails.
- patch #2 fixes a name leak while rio_register_mport() fails.
This patch (of 2):
If rio_add_device() returns error, the name allocated by dev_set_name()
need be freed. It should use put_device() to give up the reference in the
error path, so that the name can be freed in kobject_cleanup(), and the
'rdev' can be freed in rio_release_dev(). |
In the Linux kernel, the following vulnerability has been resolved:
NFSD: Protect against send buffer overflow in NFSv3 READ
Since before the git era, NFSD has conserved the number of pages
held by each nfsd thread by combining the RPC receive and send
buffers into a single array of pages. This works because there are
no cases where an operation needs a large RPC Call message and a
large RPC Reply at the same time.
Once an RPC Call has been received, svc_process() updates
svc_rqst::rq_res to describe the part of rq_pages that can be
used for constructing the Reply. This means that the send buffer
(rq_res) shrinks when the received RPC record containing the RPC
Call is large.
A client can force this shrinkage on TCP by sending a correctly-
formed RPC Call header contained in an RPC record that is
excessively large. The full maximum payload size cannot be
constructed in that case. |
In the Linux kernel, the following vulnerability has been resolved:
misc: tifm: fix possible memory leak in tifm_7xx1_switch_media()
If device_register() returns error in tifm_7xx1_switch_media(),
name of kobject which is allocated in dev_set_name() called in device_add()
is leaked.
Never directly free @dev after calling device_register(), even
if it returned an error! Always use put_device() to give up the
reference initialized. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix use-after-free
Fix potential use-after-free in l2cap_le_command_rej. |
In the Linux kernel, the following vulnerability has been resolved:
ext2/dax: Fix ext2_setsize when len is page aligned
PAGE_ALIGN(x) macro gives the next highest value which is multiple of
pagesize. But if x is already page aligned then it simply returns x.
So, if x passed is 0 in dax_zero_range() function, that means the
length gets passed as 0 to ->iomap_begin().
In ext2 it then calls ext2_get_blocks -> max_blocks as 0 and hits bug_on
here in ext2_get_blocks().
BUG_ON(maxblocks == 0);
Instead we should be calling dax_truncate_page() here which takes
care of it. i.e. it only calls dax_zero_range if the offset is not
page/block aligned.
This can be easily triggered with following on fsdax mounted pmem
device.
dd if=/dev/zero of=file count=1 bs=512
truncate -s 0 file
[79.525838] EXT2-fs (pmem0): DAX enabled. Warning: EXPERIMENTAL, use at your own risk
[79.529376] ext2 filesystem being mounted at /mnt1/test supports timestamps until 2038 (0x7fffffff)
[93.793207] ------------[ cut here ]------------
[93.795102] kernel BUG at fs/ext2/inode.c:637!
[93.796904] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[93.798659] CPU: 0 PID: 1192 Comm: truncate Not tainted 6.3.0-rc2-xfstests-00056-g131086faa369 #139
[93.806459] RIP: 0010:ext2_get_blocks.constprop.0+0x524/0x610
<...>
[93.835298] Call Trace:
[93.836253] <TASK>
[93.837103] ? lock_acquire+0xf8/0x110
[93.838479] ? d_lookup+0x69/0xd0
[93.839779] ext2_iomap_begin+0xa7/0x1c0
[93.841154] iomap_iter+0xc7/0x150
[93.842425] dax_zero_range+0x6e/0xa0
[93.843813] ext2_setsize+0x176/0x1b0
[93.845164] ext2_setattr+0x151/0x200
[93.846467] notify_change+0x341/0x4e0
[93.847805] ? lock_acquire+0xf8/0x110
[93.849143] ? do_truncate+0x74/0xe0
[93.850452] ? do_truncate+0x84/0xe0
[93.851739] do_truncate+0x84/0xe0
[93.852974] do_sys_ftruncate+0x2b4/0x2f0
[93.854404] do_syscall_64+0x3f/0x90
[93.855789] entry_SYSCALL_64_after_hwframe+0x72/0xdc |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_rbtree: fix overlap expiration walk
The lazy gc on insert that should remove timed-out entries fails to release
the other half of the interval, if any.
Can be reproduced with tests/shell/testcases/sets/0044interval_overlap_0
in nftables.git and kmemleak enabled kernel.
Second bug is the use of rbe_prev vs. prev pointer.
If rbe_prev() returns NULL after at least one iteration, rbe_prev points
to element that is not an end interval, hence it should not be removed.
Lastly, check the genmask of the end interval if this is active in the
current generation. |
osCommerce versions up to and including 2.2 RC2a contain a vulnerability in its administrative file manager utility (admin/file_manager.php). The interface allows file uploads and edits without sufficient input validation or access control. An unauthenticated attacker can craft a POST request to upload a .php file containing arbitrary code, which is then executed by the server. |
In the Linux kernel, the following vulnerability has been resolved:
net: fec: Better handle pm_runtime_get() failing in .remove()
In the (unlikely) event that pm_runtime_get() (disguised as
pm_runtime_resume_and_get()) fails, the remove callback returned an
error early. The problem with this is that the driver core ignores the
error value and continues removing the device. This results in a
resource leak. Worse the devm allocated resources are freed and so if a
callback of the driver is called later the register mapping is already
gone which probably results in a crash. |
In the Linux kernel, the following vulnerability has been resolved:
power: supply: axp288_fuel_gauge: Fix external_power_changed race
fuel_gauge_external_power_changed() dereferences info->bat,
which gets sets in axp288_fuel_gauge_probe() like this:
info->bat = devm_power_supply_register(dev, &fuel_gauge_desc, &psy_cfg);
As soon as devm_power_supply_register() has called device_add()
the external_power_changed callback can get called. So there is a window
where fuel_gauge_external_power_changed() may get called while
info->bat has not been set yet leading to a NULL pointer dereference.
Fixing this is easy. The external_power_changed callback gets passed
the power_supply which will eventually get stored in info->bat,
so fuel_gauge_external_power_changed() can simply directly use
the passed in psy argument which is always valid. |
In the Linux kernel, the following vulnerability has been resolved:
fbdev/ep93xx-fb: Do not assign to struct fb_info.dev
Do not assing the Linux device to struct fb_info.dev. The call to
register_framebuffer() initializes the field to the fbdev device.
Drivers should not override its value.
Fixes a bug where the driver incorrectly decreases the hardware
device's reference counter and leaks the fbdev device.
v2:
* add Fixes tag (Dan) |
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dp: Free resources after unregistering them
The DP component's unbind operation walks through the submodules to
unregister and clean things up. But if the unbind happens because the DP
controller itself is being removed, all the memory for those submodules
has just been freed.
Change the order of these operations to avoid the many use-after-free
that otherwise happens in this code path.
Patchwork: https://patchwork.freedesktop.org/patch/542166/ |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix WARNING in mb_find_extent
Syzbot found the following issue:
EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!
EXT4-fs (loop0): orphan cleanup on readonly fs
------------[ cut here ]------------
WARNING: CPU: 1 PID: 5067 at fs/ext4/mballoc.c:1869 mb_find_extent+0x8a1/0xe30
Modules linked in:
CPU: 1 PID: 5067 Comm: syz-executor307 Not tainted 6.2.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
RIP: 0010:mb_find_extent+0x8a1/0xe30 fs/ext4/mballoc.c:1869
RSP: 0018:ffffc90003c9e098 EFLAGS: 00010293
RAX: ffffffff82405731 RBX: 0000000000000041 RCX: ffff8880783457c0
RDX: 0000000000000000 RSI: 0000000000000041 RDI: 0000000000000040
RBP: 0000000000000040 R08: ffffffff82405723 R09: ffffed10053c9402
R10: ffffed10053c9402 R11: 1ffff110053c9401 R12: 0000000000000000
R13: ffffc90003c9e538 R14: dffffc0000000000 R15: ffffc90003c9e2cc
FS: 0000555556665300(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000056312f6796f8 CR3: 0000000022437000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
ext4_mb_complex_scan_group+0x353/0x1100 fs/ext4/mballoc.c:2307
ext4_mb_regular_allocator+0x1533/0x3860 fs/ext4/mballoc.c:2735
ext4_mb_new_blocks+0xddf/0x3db0 fs/ext4/mballoc.c:5605
ext4_ext_map_blocks+0x1868/0x6880 fs/ext4/extents.c:4286
ext4_map_blocks+0xa49/0x1cc0 fs/ext4/inode.c:651
ext4_getblk+0x1b9/0x770 fs/ext4/inode.c:864
ext4_bread+0x2a/0x170 fs/ext4/inode.c:920
ext4_quota_write+0x225/0x570 fs/ext4/super.c:7105
write_blk fs/quota/quota_tree.c:64 [inline]
get_free_dqblk+0x34a/0x6d0 fs/quota/quota_tree.c:130
do_insert_tree+0x26b/0x1aa0 fs/quota/quota_tree.c:340
do_insert_tree+0x722/0x1aa0 fs/quota/quota_tree.c:375
do_insert_tree+0x722/0x1aa0 fs/quota/quota_tree.c:375
do_insert_tree+0x722/0x1aa0 fs/quota/quota_tree.c:375
dq_insert_tree fs/quota/quota_tree.c:401 [inline]
qtree_write_dquot+0x3b6/0x530 fs/quota/quota_tree.c:420
v2_write_dquot+0x11b/0x190 fs/quota/quota_v2.c:358
dquot_acquire+0x348/0x670 fs/quota/dquot.c:444
ext4_acquire_dquot+0x2dc/0x400 fs/ext4/super.c:6740
dqget+0x999/0xdc0 fs/quota/dquot.c:914
__dquot_initialize+0x3d0/0xcf0 fs/quota/dquot.c:1492
ext4_process_orphan+0x57/0x2d0 fs/ext4/orphan.c:329
ext4_orphan_cleanup+0xb60/0x1340 fs/ext4/orphan.c:474
__ext4_fill_super fs/ext4/super.c:5516 [inline]
ext4_fill_super+0x81cd/0x8700 fs/ext4/super.c:5644
get_tree_bdev+0x400/0x620 fs/super.c:1282
vfs_get_tree+0x88/0x270 fs/super.c:1489
do_new_mount+0x289/0xad0 fs/namespace.c:3145
do_mount fs/namespace.c:3488 [inline]
__do_sys_mount fs/namespace.c:3697 [inline]
__se_sys_mount+0x2d3/0x3c0 fs/namespace.c:3674
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Add some debug information:
mb_find_extent: mb_find_extent block=41, order=0 needed=64 next=0 ex=0/41/1@3735929054 64 64 7
block_bitmap: ff 3f 0c 00 fc 01 00 00 d2 3d 00 00 00 00 00 00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
Acctually, blocks per group is 64, but block bitmap indicate at least has
128 blocks. Now, ext4_validate_block_bitmap() didn't check invalid block's
bitmap if set.
To resolve above issue, add check like fsck "Padding at end of block bitmap is
not set". |
In the Linux kernel, the following vulnerability has been resolved:
recordmcount: Fix memory leaks in the uwrite function
Common realloc mistake: 'file_append' nulled but not freed upon failure |
In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix issues in mpi3mr_get_all_tgt_info()
The function mpi3mr_get_all_tgt_info() has four issues:
1) It calculates valid entry length in alltgt_info assuming the header part
of the struct mpi3mr_device_map_info would equal to sizeof(u32). The
correct size is sizeof(u64).
2) When it calculates the valid entry length kern_entrylen, it excludes one
entry by subtracting 1 from num_devices.
3) It copies num_device by calling memcpy(). Substitution is enough.
4) It does not specify the calculated length to sg_copy_from_buffer().
Instead, it specifies the payload length which is larger than the
alltgt_info size. It causes "BUG: KASAN: slab-out-of-bounds".
Fix the issues by using the correct header size, removing the subtraction
from num_devices, replacing the memcpy() with substitution and specifying
the correct length to sg_copy_from_buffer(). |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211_hwsim: drop short frames
While technically some control frames like ACK are shorter and
end after Address 1, such frames shouldn't be forwarded through
wmediumd or similar userspace, so require the full 3-address
header to avoid accessing invalid memory if shorter frames are
passed in. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Wait for io return on terminate rport
System crash due to use after free.
Current code allows terminate_rport_io to exit before making
sure all IOs has returned. For FCP-2 device, IO's can hang
on in HW because driver has not tear down the session in FW at
first sign of cable pull. When dev_loss_tmo timer pops,
terminate_rport_io is called and upper layer is about to
free various resources. Terminate_rport_io trigger qla to do
the final cleanup, but the cleanup might not be fast enough where it
leave qla still holding on to the same resource.
Wait for IO's to return to upper layer before resources are freed. |
In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: dp: Change logging to dev for mtk_dp_aux_transfer()
Change logging from drm_{err,info}() to dev_{err,info}() in functions
mtk_dp_aux_transfer() and mtk_dp_aux_do_transfer(): this will be
essential to avoid getting NULL pointer kernel panics if any kind
of error happens during AUX transfers happening before the bridge
is attached.
This may potentially start happening in a later commit implementing
aux-bus support, as AUX transfers will be triggered from the panel
driver (for EDID) before the mtk-dp bridge gets attached, and it's
done in preparation for the same. |
In the Linux kernel, the following vulnerability has been resolved:
powerpc: Don't try to copy PPR for task with NULL pt_regs
powerpc sets up PF_KTHREAD and PF_IO_WORKER with a NULL pt_regs, which
from my (arguably very short) checking is not commonly done for other
archs. This is fine, except when PF_IO_WORKER's have been created and
the task does something that causes a coredump to be generated. Then we
get this crash:
Kernel attempted to read user page (160) - exploit attempt? (uid: 1000)
BUG: Kernel NULL pointer dereference on read at 0x00000160
Faulting instruction address: 0xc0000000000c3a60
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=32 NUMA pSeries
Modules linked in: bochs drm_vram_helper drm_kms_helper xts binfmt_misc ecb ctr syscopyarea sysfillrect cbc sysimgblt drm_ttm_helper aes_generic ttm sg libaes evdev joydev virtio_balloon vmx_crypto gf128mul drm dm_mod fuse loop configfs drm_panel_orientation_quirks ip_tables x_tables autofs4 hid_generic usbhid hid xhci_pci xhci_hcd usbcore usb_common sd_mod
CPU: 1 PID: 1982 Comm: ppc-crash Not tainted 6.3.0-rc2+ #88
Hardware name: IBM pSeries (emulated by qemu) POWER9 (raw) 0x4e1202 0xf000005 of:SLOF,HEAD hv:linux,kvm pSeries
NIP: c0000000000c3a60 LR: c000000000039944 CTR: c0000000000398e0
REGS: c0000000041833b0 TRAP: 0300 Not tainted (6.3.0-rc2+)
MSR: 800000000280b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 88082828 XER: 200400f8
...
NIP memcpy_power7+0x200/0x7d0
LR ppr_get+0x64/0xb0
Call Trace:
ppr_get+0x40/0xb0 (unreliable)
__regset_get+0x180/0x1f0
regset_get_alloc+0x64/0x90
elf_core_dump+0xb98/0x1b60
do_coredump+0x1c34/0x24a0
get_signal+0x71c/0x1410
do_notify_resume+0x140/0x6f0
interrupt_exit_user_prepare_main+0x29c/0x320
interrupt_exit_user_prepare+0x6c/0xa0
interrupt_return_srr_user+0x8/0x138
Because ppr_get() is trying to copy from a PF_IO_WORKER with a NULL
pt_regs.
Check for a valid pt_regs in both ppc_get/ppr_set, and return an error
if not set. The actual error value doesn't seem to be important here, so
just pick -EINVAL.
[mpe: Trim oops in change log, add Fixes & Cc stable] |
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Enhance sanity check while generating attr_list
ni_create_attr_list uses WARN_ON to catch error cases while generating
attribute list, which only prints out stack trace and may not be enough.
This repalces them with more proper error handling flow.
[ 59.666332] BUG: kernel NULL pointer dereference, address: 000000000000000e
[ 59.673268] #PF: supervisor read access in kernel mode
[ 59.678354] #PF: error_code(0x0000) - not-present page
[ 59.682831] PGD 8000000005ff1067 P4D 8000000005ff1067 PUD 7dee067 PMD 0
[ 59.688556] Oops: 0000 [#1] PREEMPT SMP KASAN PTI
[ 59.692642] CPU: 0 PID: 198 Comm: poc Tainted: G B W 6.2.0-rc1+ #4
[ 59.698868] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
[ 59.708795] RIP: 0010:ni_create_attr_list+0x505/0x860
[ 59.713657] Code: 7e 10 e8 5e d0 d0 ff 45 0f b7 76 10 48 8d 7b 16 e8 00 d1 d0 ff 66 44 89 73 16 4d 8d 75 0e 4c 89 f7 e8 3f d0 d0 ff 4c 8d8
[ 59.731559] RSP: 0018:ffff88800a56f1e0 EFLAGS: 00010282
[ 59.735691] RAX: 0000000000000001 RBX: ffff88800b7b5088 RCX: ffffffffb83079fe
[ 59.741792] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffffbb7f9fc0
[ 59.748423] RBP: ffff88800a56f3a8 R08: ffff88800b7b50a0 R09: fffffbfff76ff3f9
[ 59.754654] R10: ffffffffbb7f9fc7 R11: fffffbfff76ff3f8 R12: ffff88800b756180
[ 59.761552] R13: 0000000000000000 R14: 000000000000000e R15: 0000000000000050
[ 59.768323] FS: 00007feaa8c96440(0000) GS:ffff88806d400000(0000) knlGS:0000000000000000
[ 59.776027] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 59.781395] CR2: 00007f3a2e0b1000 CR3: 000000000a5bc000 CR4: 00000000000006f0
[ 59.787607] Call Trace:
[ 59.790271] <TASK>
[ 59.792488] ? __pfx_ni_create_attr_list+0x10/0x10
[ 59.797235] ? kernel_text_address+0xd3/0xe0
[ 59.800856] ? unwind_get_return_address+0x3e/0x60
[ 59.805101] ? __kasan_check_write+0x18/0x20
[ 59.809296] ? preempt_count_sub+0x1c/0xd0
[ 59.813421] ni_ins_attr_ext+0x52c/0x5c0
[ 59.817034] ? __pfx_ni_ins_attr_ext+0x10/0x10
[ 59.821926] ? __vfs_setxattr+0x121/0x170
[ 59.825718] ? __vfs_setxattr_noperm+0x97/0x300
[ 59.829562] ? __vfs_setxattr_locked+0x145/0x170
[ 59.833987] ? vfs_setxattr+0x137/0x2a0
[ 59.836732] ? do_setxattr+0xce/0x150
[ 59.839807] ? setxattr+0x126/0x140
[ 59.842353] ? path_setxattr+0x164/0x180
[ 59.845275] ? __x64_sys_setxattr+0x71/0x90
[ 59.848838] ? do_syscall_64+0x3f/0x90
[ 59.851898] ? entry_SYSCALL_64_after_hwframe+0x72/0xdc
[ 59.857046] ? stack_depot_save+0x17/0x20
[ 59.860299] ni_insert_attr+0x1ba/0x420
[ 59.863104] ? __pfx_ni_insert_attr+0x10/0x10
[ 59.867069] ? preempt_count_sub+0x1c/0xd0
[ 59.869897] ? _raw_spin_unlock_irqrestore+0x2b/0x50
[ 59.874088] ? __create_object+0x3ae/0x5d0
[ 59.877865] ni_insert_resident+0xc4/0x1c0
[ 59.881430] ? __pfx_ni_insert_resident+0x10/0x10
[ 59.886355] ? kasan_save_alloc_info+0x1f/0x30
[ 59.891117] ? __kasan_kmalloc+0x8b/0xa0
[ 59.894383] ntfs_set_ea+0x90d/0xbf0
[ 59.897703] ? __pfx_ntfs_set_ea+0x10/0x10
[ 59.901011] ? kernel_text_address+0xd3/0xe0
[ 59.905308] ? __kernel_text_address+0x16/0x50
[ 59.909811] ? unwind_get_return_address+0x3e/0x60
[ 59.914898] ? __pfx_stack_trace_consume_entry+0x10/0x10
[ 59.920250] ? arch_stack_walk+0xa2/0x100
[ 59.924560] ? filter_irq_stacks+0x27/0x80
[ 59.928722] ntfs_setxattr+0x405/0x440
[ 59.932512] ? __pfx_ntfs_setxattr+0x10/0x10
[ 59.936634] ? kvmalloc_node+0x2d/0x120
[ 59.940378] ? kasan_save_stack+0x41/0x60
[ 59.943870] ? kasan_save_stack+0x2a/0x60
[ 59.947719] ? kasan_set_track+0x29/0x40
[ 59.951417] ? kasan_save_alloc_info+0x1f/0x30
[ 59.955733] ? __kasan_kmalloc+0x8b/0xa0
[ 59.959598] ? __kmalloc_node+0x68/0x150
[ 59.963163] ? kvmalloc_node+0x2d/0x120
[ 59.966490] ? vmemdup_user+0x2b/0xa0
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
genirq/ipi: Fix NULL pointer deref in irq_data_get_affinity_mask()
If ipi_send_{mask|single}() is called with an invalid interrupt number, all
the local variables there will be NULL. ipi_send_verify() which is invoked
from these functions does verify its 'data' parameter, resulting in a
kernel oops in irq_data_get_affinity_mask() as the passed NULL pointer gets
dereferenced.
Add a missing NULL pointer check in ipi_send_verify()...
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool. |