| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: Block access to folio overlimit
syz reported a slab-out-of-bounds Write in fuse_dev_do_write.
When the number of bytes to be retrieved is truncated to the upper limit
by fc->max_pages and there is an offset, the oob is triggered.
Add a loop termination condition to prevent overruns. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing/osnoise: Fix null-ptr-deref in bitmap_parselist()
A crash was observed with the following output:
BUG: kernel NULL pointer dereference, address: 0000000000000010
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 2 UID: 0 PID: 92 Comm: osnoise_cpus Not tainted 6.17.0-rc4-00201-gd69eb204c255 #138 PREEMPT(voluntary)
RIP: 0010:bitmap_parselist+0x53/0x3e0
Call Trace:
<TASK>
osnoise_cpus_write+0x7a/0x190
vfs_write+0xf8/0x410
? do_sys_openat2+0x88/0xd0
ksys_write+0x60/0xd0
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
This issue can be reproduced by below code:
fd=open("/sys/kernel/debug/tracing/osnoise/cpus", O_WRONLY);
write(fd, "0-2", 0);
When user pass 'count=0' to osnoise_cpus_write(), kmalloc() will return
ZERO_SIZE_PTR (16) and cpulist_parse() treat it as a normal value, which
trigger the null pointer dereference. Add check for the parameter 'count'. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Tell memcg to use allow_spinning=false path in bpf_timer_init()
Currently, calling bpf_map_kmalloc_node() from __bpf_async_init() can
cause various locking issues; see the following stack trace (edited for
style) as one example:
...
[10.011566] do_raw_spin_lock.cold
[10.011570] try_to_wake_up (5) double-acquiring the same
[10.011575] kick_pool rq_lock, causing a hardlockup
[10.011579] __queue_work
[10.011582] queue_work_on
[10.011585] kernfs_notify
[10.011589] cgroup_file_notify
[10.011593] try_charge_memcg (4) memcg accounting raises an
[10.011597] obj_cgroup_charge_pages MEMCG_MAX event
[10.011599] obj_cgroup_charge_account
[10.011600] __memcg_slab_post_alloc_hook
[10.011603] __kmalloc_node_noprof
...
[10.011611] bpf_map_kmalloc_node
[10.011612] __bpf_async_init
[10.011615] bpf_timer_init (3) BPF calls bpf_timer_init()
[10.011617] bpf_prog_xxxxxxxxxxxxxxxx_fcg_runnable
[10.011619] bpf__sched_ext_ops_runnable
[10.011620] enqueue_task_scx (2) BPF runs with rq_lock held
[10.011622] enqueue_task
[10.011626] ttwu_do_activate
[10.011629] sched_ttwu_pending (1) grabs rq_lock
...
The above was reproduced on bpf-next (b338cf849ec8) by modifying
./tools/sched_ext/scx_flatcg.bpf.c to call bpf_timer_init() during
ops.runnable(), and hacking the memcg accounting code a bit to make
a bpf_timer_init() call more likely to raise an MEMCG_MAX event.
We have also run into other similar variants (both internally and on
bpf-next), including double-acquiring cgroup_file_kn_lock, the same
worker_pool::lock, etc.
As suggested by Shakeel, fix this by using __GFP_HIGH instead of
GFP_ATOMIC in __bpf_async_init(), so that e.g. if try_charge_memcg()
raises an MEMCG_MAX event, we call __memcg_memory_event() with
@allow_spinning=false and avoid calling cgroup_file_notify() there.
Depends on mm patch
"memcg: skip cgroup_file_notify if spinning is not allowed":
https://lore.kernel.org/bpf/20250905201606.66198-1-shakeel.butt@linux.dev/
v0 approach s/bpf_map_kmalloc_node/bpf_mem_alloc/
https://lore.kernel.org/bpf/20250905061919.439648-1-yepeilin@google.com/
v1 approach:
https://lore.kernel.org/bpf/20250905234547.862249-1-yepeilin@google.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix subvolume deletion lockup caused by inodes xarray race
There is a race condition between inode eviction and inode caching that
can cause a live struct btrfs_inode to be missing from the root->inodes
xarray. Specifically, there is a window during evict() between the inode
being unhashed and deleted from the xarray. If btrfs_iget() is called
for the same inode in that window, it will be recreated and inserted
into the xarray, but then eviction will delete the new entry, leaving
nothing in the xarray:
Thread 1 Thread 2
---------------------------------------------------------------
evict()
remove_inode_hash()
btrfs_iget_path()
btrfs_iget_locked()
btrfs_read_locked_inode()
btrfs_add_inode_to_root()
destroy_inode()
btrfs_destroy_inode()
btrfs_del_inode_from_root()
__xa_erase
In turn, this can cause issues for subvolume deletion. Specifically, if
an inode is in this lost state, and all other inodes are evicted, then
btrfs_del_inode_from_root() will call btrfs_add_dead_root() prematurely.
If the lost inode has a delayed_node attached to it, then when
btrfs_clean_one_deleted_snapshot() calls btrfs_kill_all_delayed_nodes(),
it will loop forever because the delayed_nodes xarray will never become
empty (unless memory pressure forces the inode out). We saw this
manifest as soft lockups in production.
Fix it by only deleting the xarray entry if it matches the given inode
(using __xa_cmpxchg()). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: fix potential OF node use-after-free
The for_each_child_of_node() helper drops the reference it takes to each
node as it iterates over children and an explicit of_node_put() is only
needed when exiting the loop early.
Drop the recently introduced bogus additional reference count decrement
at each iteration that could potentially lead to a use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
kernfs: Fix UAF in polling when open file is released
A use-after-free (UAF) vulnerability was identified in the PSI (Pressure
Stall Information) monitoring mechanism:
BUG: KASAN: slab-use-after-free in psi_trigger_poll+0x3c/0x140
Read of size 8 at addr ffff3de3d50bd308 by task systemd/1
psi_trigger_poll+0x3c/0x140
cgroup_pressure_poll+0x70/0xa0
cgroup_file_poll+0x8c/0x100
kernfs_fop_poll+0x11c/0x1c0
ep_item_poll.isra.0+0x188/0x2c0
Allocated by task 1:
cgroup_file_open+0x88/0x388
kernfs_fop_open+0x73c/0xaf0
do_dentry_open+0x5fc/0x1200
vfs_open+0xa0/0x3f0
do_open+0x7e8/0xd08
path_openat+0x2fc/0x6b0
do_filp_open+0x174/0x368
Freed by task 8462:
cgroup_file_release+0x130/0x1f8
kernfs_drain_open_files+0x17c/0x440
kernfs_drain+0x2dc/0x360
kernfs_show+0x1b8/0x288
cgroup_file_show+0x150/0x268
cgroup_pressure_write+0x1dc/0x340
cgroup_file_write+0x274/0x548
Reproduction Steps:
1. Open test/cpu.pressure and establish epoll monitoring
2. Disable monitoring: echo 0 > test/cgroup.pressure
3. Re-enable monitoring: echo 1 > test/cgroup.pressure
The race condition occurs because:
1. When cgroup.pressure is disabled (echo 0 > cgroup.pressure), it:
- Releases PSI triggers via cgroup_file_release()
- Frees of->priv through kernfs_drain_open_files()
2. While epoll still holds reference to the file and continues polling
3. Re-enabling (echo 1 > cgroup.pressure) accesses freed of->priv
epolling disable/enable cgroup.pressure
fd=open(cpu.pressure)
while(1)
...
epoll_wait
kernfs_fop_poll
kernfs_get_active = true echo 0 > cgroup.pressure
... cgroup_file_show
kernfs_show
// inactive kn
kernfs_drain_open_files
cft->release(of);
kfree(ctx);
...
kernfs_get_active = false
echo 1 > cgroup.pressure
kernfs_show
kernfs_activate_one(kn);
kernfs_fop_poll
kernfs_get_active = true
cgroup_file_poll
psi_trigger_poll
// UAF
...
end: close(fd)
To address this issue, introduce kernfs_get_active_of() for kernfs open
files to obtain active references. This function will fail if the open file
has been released. Replace kernfs_get_active() with kernfs_get_active_of()
to prevent further operations on released file descriptors. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: always call ceph_shift_unused_folios_left()
The function ceph_process_folio_batch() sets folio_batch entries to
NULL, which is an illegal state. Before folio_batch_release() crashes
due to this API violation, the function ceph_shift_unused_folios_left()
is supposed to remove those NULLs from the array.
However, since commit ce80b76dd327 ("ceph: introduce
ceph_process_folio_batch() method"), this shifting doesn't happen
anymore because the "for" loop got moved to ceph_process_folio_batch(),
and now the `i` variable that remains in ceph_writepages_start()
doesn't get incremented anymore, making the shifting effectively
unreachable much of the time.
Later, commit 1551ec61dc55 ("ceph: introduce ceph_submit_write()
method") added more preconditions for doing the shift, replacing the
`i` check (with something that is still just as broken):
- if ceph_process_folio_batch() fails, shifting never happens
- if ceph_move_dirty_page_in_page_array() was never called (because
ceph_process_folio_batch() has returned early for some of various
reasons), shifting never happens
- if `processed_in_fbatch` is zero (because ceph_process_folio_batch()
has returned early for some of the reasons mentioned above or
because ceph_move_dirty_page_in_page_array() has failed), shifting
never happens
Since those two commits, any problem in ceph_process_folio_batch()
could crash the kernel, e.g. this way:
BUG: kernel NULL pointer dereference, address: 0000000000000034
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: Oops: 0002 [#1] SMP NOPTI
CPU: 172 UID: 0 PID: 2342707 Comm: kworker/u778:8 Not tainted 6.15.10-cm4all1-es #714 NONE
Hardware name: Dell Inc. PowerEdge R7615/0G9DHV, BIOS 1.6.10 12/08/2023
Workqueue: writeback wb_workfn (flush-ceph-1)
RIP: 0010:folios_put_refs+0x85/0x140
Code: 83 c5 01 39 e8 7e 76 48 63 c5 49 8b 5c c4 08 b8 01 00 00 00 4d 85 ed 74 05 41 8b 44 ad 00 48 8b 15 b0 >
RSP: 0018:ffffb880af8db778 EFLAGS: 00010207
RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000003
RDX: ffffe377cc3b0000 RSI: 0000000000000000 RDI: ffffb880af8db8c0
RBP: 0000000000000000 R08: 000000000000007d R09: 000000000102b86f
R10: 0000000000000001 R11: 00000000000000ac R12: ffffb880af8db8c0
R13: 0000000000000000 R14: 0000000000000000 R15: ffff9bd262c97000
FS: 0000000000000000(0000) GS:ffff9c8efc303000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000034 CR3: 0000000160958004 CR4: 0000000000770ef0
PKRU: 55555554
Call Trace:
<TASK>
ceph_writepages_start+0xeb9/0x1410
The crash can be reproduced easily by changing the
ceph_check_page_before_write() return value to `-E2BIG`.
(Interestingly, the crash happens only if `huge_zero_folio` has
already been allocated; without `huge_zero_folio`,
is_huge_zero_folio(NULL) returns true and folios_put_refs() skips NULL
entries instead of dereferencing them. That makes reproducing the bug
somewhat unreliable. See
https://lore.kernel.org/20250826231626.218675-1-max.kellermann@ionos.com
for a discussion of this detail.)
My suggestion is to move the ceph_shift_unused_folios_left() to right
after ceph_process_folio_batch() to ensure it always gets called to
fix up the illegal folio_batch state. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix crash after fscrypt_encrypt_pagecache_blocks() error
The function move_dirty_folio_in_page_array() was created by commit
ce80b76dd327 ("ceph: introduce ceph_process_folio_batch() method") by
moving code from ceph_writepages_start() to this function.
This new function is supposed to return an error code which is checked
by the caller (now ceph_process_folio_batch()), and on error, the
caller invokes redirty_page_for_writepage() and then breaks from the
loop.
However, the refactoring commit has gone wrong, and it by accident, it
always returns 0 (= success) because it first NULLs the pointer and
then returns PTR_ERR(NULL) which is always 0. This means errors are
silently ignored, leaving NULL entries in the page array, which may
later crash the kernel.
The simple solution is to call PTR_ERR() before clearing the pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs: fix use-after-free in state_show()
state_show() reads kdamond->damon_ctx without holding damon_sysfs_lock.
This allows a use-after-free race:
CPU 0 CPU 1
----- -----
state_show() damon_sysfs_turn_damon_on()
ctx = kdamond->damon_ctx; mutex_lock(&damon_sysfs_lock);
damon_destroy_ctx(kdamond->damon_ctx);
kdamond->damon_ctx = NULL;
mutex_unlock(&damon_sysfs_lock);
damon_is_running(ctx); /* ctx is freed */
mutex_lock(&ctx->kdamond_lock); /* UAF */
(The race can also occur with damon_sysfs_kdamonds_rm_dirs() and
damon_sysfs_kdamond_release(), which free or replace the context under
damon_sysfs_lock.)
Fix by taking damon_sysfs_lock before dereferencing the context, mirroring
the locking used in pid_show().
The bug has existed since state_show() first accessed kdamond->damon_ctx. |
| In the Linux kernel, the following vulnerability has been resolved:
igb: Fix NULL pointer dereference in ethtool loopback test
The igb driver currently causes a NULL pointer dereference when executing
the ethtool loopback test. This occurs because there is no associated
q_vector for the test ring when it is set up, as interrupts are typically
not added to the test rings.
Since commit 5ef44b3cb43b removed the napi_id assignment in
__xdp_rxq_info_reg(), there is no longer a need to pass a napi_id to it.
Therefore, simply use 0 as the last parameter. |
| In the Linux kernel, the following vulnerability has been resolved:
macsec: sync features on RTM_NEWLINK
Syzkaller managed to lock the lower device via ETHTOOL_SFEATURES:
netdev_lock include/linux/netdevice.h:2761 [inline]
netdev_lock_ops include/net/netdev_lock.h:42 [inline]
netdev_sync_lower_features net/core/dev.c:10649 [inline]
__netdev_update_features+0xcb1/0x1be0 net/core/dev.c:10819
netdev_update_features+0x6d/0xe0 net/core/dev.c:10876
macsec_notify+0x2f5/0x660 drivers/net/macsec.c:4533
notifier_call_chain+0x1b3/0x3e0 kernel/notifier.c:85
call_netdevice_notifiers_extack net/core/dev.c:2267 [inline]
call_netdevice_notifiers net/core/dev.c:2281 [inline]
netdev_features_change+0x85/0xc0 net/core/dev.c:1570
__dev_ethtool net/ethtool/ioctl.c:3469 [inline]
dev_ethtool+0x1536/0x19b0 net/ethtool/ioctl.c:3502
dev_ioctl+0x392/0x1150 net/core/dev_ioctl.c:759
It happens because lower features are out of sync with the upper:
__dev_ethtool (real_dev)
netdev_lock_ops(real_dev)
ETHTOOL_SFEATURES
__netdev_features_change
netdev_sync_upper_features
disable LRO on the lower
if (old_features != dev->features)
netdev_features_change
fires NETDEV_FEAT_CHANGE
macsec_notify
NETDEV_FEAT_CHANGE
netdev_update_features (for each macsec dev)
netdev_sync_lower_features
if (upper_features != lower_features)
netdev_lock_ops(lower) # lower == real_dev
stuck
...
netdev_unlock_ops(real_dev)
Per commit af5f54b0ef9e ("net: Lock lower level devices when updating
features"), we elide the lock/unlock when the upper and lower features
are synced. Makes sure the lower (real_dev) has proper features after
the macsec link has been created. This makes sure we never hit the
situation where we need to sync upper flags to the lower. |
| In the Linux kernel, the following vulnerability has been resolved:
hsr: hold rcu and dev lock for hsr_get_port_ndev
hsr_get_port_ndev calls hsr_for_each_port, which need to hold rcu lock.
On the other hand, before return the port device, we need to hold the
device reference to avoid UaF in the caller function. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Remove improper idxd_free
The call to idxd_free() introduces a duplicate put_device() leading to a
reference count underflow:
refcount_t: underflow; use-after-free.
WARNING: CPU: 15 PID: 4428 at lib/refcount.c:28 refcount_warn_saturate+0xbe/0x110
...
Call Trace:
<TASK>
idxd_remove+0xe4/0x120 [idxd]
pci_device_remove+0x3f/0xb0
device_release_driver_internal+0x197/0x200
driver_detach+0x48/0x90
bus_remove_driver+0x74/0xf0
pci_unregister_driver+0x2e/0xb0
idxd_exit_module+0x34/0x7a0 [idxd]
__do_sys_delete_module.constprop.0+0x183/0x280
do_syscall_64+0x54/0xd70
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The idxd_unregister_devices() which is invoked at the very beginning of
idxd_remove(), already takes care of the necessary put_device() through the
following call path:
idxd_unregister_devices() -> device_unregister() -> put_device()
In addition, when CONFIG_DEBUG_KOBJECT_RELEASE is enabled, put_device() may
trigger asynchronous cleanup via schedule_delayed_work(). If idxd_free() is
called immediately after, it can result in a use-after-free.
Remove the improper idxd_free() to avoid both the refcount underflow and
potential memory corruption during module unload. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Fix double free in idxd_setup_wqs()
The clean up in idxd_setup_wqs() has had a couple bugs because the error
handling is a bit subtle. It's simpler to just re-write it in a cleaner
way. The issues here are:
1) If "idxd->max_wqs" is <= 0 then we call put_device(conf_dev) when
"conf_dev" hasn't been initialized.
2) If kzalloc_node() fails then again "conf_dev" is invalid. It's
either uninitialized or it points to the "conf_dev" from the
previous iteration so it leads to a double free.
It's better to free partial loop iterations within the loop and then
the unwinding at the end can handle whole loop iterations. I also
renamed the labels to describe what the goto does and not where the goto
was located. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: fix runtime warning on truncate_folio_batch_exceptionals()
Commit 0e2f80afcfa6("fs/dax: ensure all pages are idle prior to
filesystem unmount") introduced the WARN_ON_ONCE to capture whether
the filesystem has removed all DAX entries or not and applied the
fix to xfs and ext4.
Apply the missed fix on erofs to fix the runtime warning:
[ 5.266254] ------------[ cut here ]------------
[ 5.266274] WARNING: CPU: 6 PID: 3109 at mm/truncate.c:89 truncate_folio_batch_exceptionals+0xff/0x260
[ 5.266294] Modules linked in:
[ 5.266999] CPU: 6 UID: 0 PID: 3109 Comm: umount Tainted: G S 6.16.0+ #6 PREEMPT(voluntary)
[ 5.267012] Tainted: [S]=CPU_OUT_OF_SPEC
[ 5.267017] Hardware name: Dell Inc. OptiPlex 5000/05WXFV, BIOS 1.5.1 08/24/2022
[ 5.267024] RIP: 0010:truncate_folio_batch_exceptionals+0xff/0x260
[ 5.267076] Code: 00 00 41 39 df 7f 11 eb 78 83 c3 01 49 83 c4 08 41 39 df 74 6c 48 63 f3 48 83 fe 1f 0f 83 3c 01 00 00 43 f6 44 26 08 01 74 df <0f> 0b 4a 8b 34 22 4c 89 ef 48 89 55 90 e8 ff 54 1f 00 48 8b 55 90
[ 5.267083] RSP: 0018:ffffc900013f36c8 EFLAGS: 00010202
[ 5.267095] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[ 5.267101] RDX: ffffc900013f3790 RSI: 0000000000000000 RDI: ffff8882a1407898
[ 5.267108] RBP: ffffc900013f3740 R08: 0000000000000000 R09: 0000000000000000
[ 5.267113] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
[ 5.267119] R13: ffff8882a1407ab8 R14: ffffc900013f3888 R15: 0000000000000001
[ 5.267125] FS: 00007aaa8b437800(0000) GS:ffff88850025b000(0000) knlGS:0000000000000000
[ 5.267132] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 5.267138] CR2: 00007aaa8b3aac10 CR3: 000000024f764000 CR4: 0000000000f52ef0
[ 5.267144] PKRU: 55555554
[ 5.267150] Call Trace:
[ 5.267154] <TASK>
[ 5.267181] truncate_inode_pages_range+0x118/0x5e0
[ 5.267193] ? save_trace+0x54/0x390
[ 5.267296] truncate_inode_pages_final+0x43/0x60
[ 5.267309] evict+0x2a4/0x2c0
[ 5.267339] dispose_list+0x39/0x80
[ 5.267352] evict_inodes+0x150/0x1b0
[ 5.267376] generic_shutdown_super+0x41/0x180
[ 5.267390] kill_block_super+0x1b/0x50
[ 5.267402] erofs_kill_sb+0x81/0x90 [erofs]
[ 5.267436] deactivate_locked_super+0x32/0xb0
[ 5.267450] deactivate_super+0x46/0x60
[ 5.267460] cleanup_mnt+0xc3/0x170
[ 5.267475] __cleanup_mnt+0x12/0x20
[ 5.267485] task_work_run+0x5d/0xb0
[ 5.267499] exit_to_user_mode_loop+0x144/0x170
[ 5.267512] do_syscall_64+0x2b9/0x7c0
[ 5.267523] ? __lock_acquire+0x665/0x2ce0
[ 5.267535] ? __lock_acquire+0x665/0x2ce0
[ 5.267560] ? lock_acquire+0xcd/0x300
[ 5.267573] ? find_held_lock+0x31/0x90
[ 5.267582] ? mntput_no_expire+0x97/0x4e0
[ 5.267606] ? mntput_no_expire+0xa1/0x4e0
[ 5.267625] ? mntput+0x24/0x50
[ 5.267634] ? path_put+0x1e/0x30
[ 5.267647] ? do_faccessat+0x120/0x2f0
[ 5.267677] ? do_syscall_64+0x1a2/0x7c0
[ 5.267686] ? from_kgid_munged+0x17/0x30
[ 5.267703] ? from_kuid_munged+0x13/0x30
[ 5.267711] ? __do_sys_getuid+0x3d/0x50
[ 5.267724] ? do_syscall_64+0x1a2/0x7c0
[ 5.267732] ? irqentry_exit+0x77/0xb0
[ 5.267743] ? clear_bhb_loop+0x30/0x80
[ 5.267752] ? clear_bhb_loop+0x30/0x80
[ 5.267765] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 5.267772] RIP: 0033:0x7aaa8b32a9fb
[ 5.267781] Code: c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 f3 0f 1e fa 31 f6 e9 05 00 00 00 0f 1f 44 00 00 f3 0f 1e fa b8 a6 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 05 c3 0f 1f 40 00 48 8b 15 e9 83 0d 00 f7 d8
[ 5.267787] RSP: 002b:00007ffd7c4c9468 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[ 5.267796] RAX: 0000000000000000 RBX: 00005a61592a8b00 RCX: 00007aaa8b32a9fb
[ 5.267802] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 00005a61592b2080
[ 5.267806] RBP: 00007ffd7c4c9540 R08: 00007aaa8b403b20 R09: 0000000000000020
[ 5.267812] R10: 0000000000000001 R11: 0000000000000246 R12: 00005a61592a8c00
[ 5.267817] R13: 00000000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
fs: writeback: fix use-after-free in __mark_inode_dirty()
An use-after-free issue occurred when __mark_inode_dirty() get the
bdi_writeback that was in the progress of switching.
CPU: 1 PID: 562 Comm: systemd-random- Not tainted 6.6.56-gb4403bd46a8e #1
......
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __mark_inode_dirty+0x124/0x418
lr : __mark_inode_dirty+0x118/0x418
sp : ffffffc08c9dbbc0
........
Call trace:
__mark_inode_dirty+0x124/0x418
generic_update_time+0x4c/0x60
file_modified+0xcc/0xd0
ext4_buffered_write_iter+0x58/0x124
ext4_file_write_iter+0x54/0x704
vfs_write+0x1c0/0x308
ksys_write+0x74/0x10c
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x48/0x114
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x40/0xe4
el0t_64_sync_handler+0x120/0x12c
el0t_64_sync+0x194/0x198
Root cause is:
systemd-random-seed kworker
----------------------------------------------------------------------
___mark_inode_dirty inode_switch_wbs_work_fn
spin_lock(&inode->i_lock);
inode_attach_wb
locked_inode_to_wb_and_lock_list
get inode->i_wb
spin_unlock(&inode->i_lock);
spin_lock(&wb->list_lock)
spin_lock(&inode->i_lock)
inode_io_list_move_locked
spin_unlock(&wb->list_lock)
spin_unlock(&inode->i_lock)
spin_lock(&old_wb->list_lock)
inode_do_switch_wbs
spin_lock(&inode->i_lock)
inode->i_wb = new_wb
spin_unlock(&inode->i_lock)
spin_unlock(&old_wb->list_lock)
wb_put_many(old_wb, nr_switched)
cgwb_release
old wb released
wb_wakeup_delayed() accesses wb,
then trigger the use-after-free
issue
Fix this race condition by holding inode spinlock until
wb_wakeup_delayed() finished. |
| In the Linux kernel, the following vulnerability has been resolved:
tee: fix NULL pointer dereference in tee_shm_put
tee_shm_put have NULL pointer dereference:
__optee_disable_shm_cache -->
shm = reg_pair_to_ptr(...);//shm maybe return NULL
tee_shm_free(shm); -->
tee_shm_put(shm);//crash
Add check in tee_shm_put to fix it.
panic log:
Unable to handle kernel paging request at virtual address 0000000000100cca
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=0000002049d07000
[0000000000100cca] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] SMP
CPU: 2 PID: 14442 Comm: systemd-sleep Tainted: P OE ------- ----
6.6.0-39-generic #38
Source Version: 938b255f6cb8817c95b0dd5c8c2944acfce94b07
Hardware name: greatwall GW-001Y1A-FTH, BIOS Great Wall BIOS V3.0
10/26/2022
pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : tee_shm_put+0x24/0x188
lr : tee_shm_free+0x14/0x28
sp : ffff001f98f9faf0
x29: ffff001f98f9faf0 x28: ffff0020df543cc0 x27: 0000000000000000
x26: ffff001f811344a0 x25: ffff8000818dac00 x24: ffff800082d8d048
x23: ffff001f850fcd18 x22: 0000000000000001 x21: ffff001f98f9fb88
x20: ffff001f83e76218 x19: ffff001f83e761e0 x18: 000000000000ffff
x17: 303a30303a303030 x16: 0000000000000000 x15: 0000000000000003
x14: 0000000000000001 x13: 0000000000000000 x12: 0101010101010101
x11: 0000000000000001 x10: 0000000000000001 x9 : ffff800080e08d0c
x8 : ffff001f98f9fb88 x7 : 0000000000000000 x6 : 0000000000000000
x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
x2 : ffff001f83e761e0 x1 : 00000000ffff001f x0 : 0000000000100cca
Call trace:
tee_shm_put+0x24/0x188
tee_shm_free+0x14/0x28
__optee_disable_shm_cache+0xa8/0x108
optee_shutdown+0x28/0x38
platform_shutdown+0x28/0x40
device_shutdown+0x144/0x2b0
kernel_power_off+0x3c/0x80
hibernate+0x35c/0x388
state_store+0x64/0x80
kobj_attr_store+0x14/0x28
sysfs_kf_write+0x48/0x60
kernfs_fop_write_iter+0x128/0x1c0
vfs_write+0x270/0x370
ksys_write+0x6c/0x100
__arm64_sys_write+0x20/0x30
invoke_syscall+0x4c/0x120
el0_svc_common.constprop.0+0x44/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x24/0x88
el0t_64_sync_handler+0x134/0x150
el0t_64_sync+0x14c/0x15 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: fix use-after-free in cmp_bss()
Following bss_free() quirk introduced in commit 776b3580178f
("cfg80211: track hidden SSID networks properly"), adjust
cfg80211_update_known_bss() to free the last beacon frame
elements only if they're not shared via the corresponding
'hidden_beacon_bss' pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix use-after-free when rescheduling brcmf_btcoex_info work
The brcmf_btcoex_detach() only shuts down the btcoex timer, if the
flag timer_on is false. However, the brcmf_btcoex_timerfunc(), which
runs as timer handler, sets timer_on to false. This creates critical
race conditions:
1.If brcmf_btcoex_detach() is called while brcmf_btcoex_timerfunc()
is executing, it may observe timer_on as false and skip the call to
timer_shutdown_sync().
2.The brcmf_btcoex_timerfunc() may then reschedule the brcmf_btcoex_info
worker after the cancel_work_sync() has been executed, resulting in
use-after-free bugs.
The use-after-free bugs occur in two distinct scenarios, depending on
the timing of when the brcmf_btcoex_info struct is freed relative to
the execution of its worker thread.
Scenario 1: Freed before the worker is scheduled
The brcmf_btcoex_info is deallocated before the worker is scheduled.
A race condition can occur when schedule_work(&bt_local->work) is
called after the target memory has been freed. The sequence of events
is detailed below:
CPU0 | CPU1
brcmf_btcoex_detach | brcmf_btcoex_timerfunc
| bt_local->timer_on = false;
if (cfg->btcoex->timer_on) |
... |
cancel_work_sync(); |
... |
kfree(cfg->btcoex); // FREE |
| schedule_work(&bt_local->work); // USE
Scenario 2: Freed after the worker is scheduled
The brcmf_btcoex_info is freed after the worker has been scheduled
but before or during its execution. In this case, statements within
the brcmf_btcoex_handler() — such as the container_of macro and
subsequent dereferences of the brcmf_btcoex_info object will cause
a use-after-free access. The following timeline illustrates this
scenario:
CPU0 | CPU1
brcmf_btcoex_detach | brcmf_btcoex_timerfunc
| bt_local->timer_on = false;
if (cfg->btcoex->timer_on) |
... |
cancel_work_sync(); |
... | schedule_work(); // Reschedule
|
kfree(cfg->btcoex); // FREE | brcmf_btcoex_handler() // Worker
/* | btci = container_of(....); // USE
The kfree() above could | ...
also occur at any point | btci-> // USE
during the worker's execution|
*/ |
To resolve the race conditions, drop the conditional check and call
timer_shutdown_sync() directly. It can deactivate the timer reliably,
regardless of its current state. Once stopped, the timer_on state is
then set to false. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7915: fix list corruption after hardware restart
Since stations are recreated from scratch, all lists that wcids are added
to must be cleared before calling ieee80211_restart_hw.
Set wcid->sta = 0 for each wcid entry in order to ensure that they are
not added again before they are ready. |