CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
binder: fix race between mmput() and do_exit()
Task A calls binder_update_page_range() to allocate and insert pages on
a remote address space from Task B. For this, Task A pins the remote mm
via mmget_not_zero() first. This can race with Task B do_exit() and the
final mmput() refcount decrement will come from Task A.
Task A | Task B
------------------+------------------
mmget_not_zero() |
| do_exit()
| exit_mm()
| mmput()
mmput() |
exit_mmap() |
remove_vma() |
fput() |
In this case, the work of ____fput() from Task B is queued up in Task A
as TWA_RESUME. So in theory, Task A returns to userspace and the cleanup
work gets executed. However, Task A instead sleep, waiting for a reply
from Task B that never comes (it's dead).
This means the binder_deferred_release() is blocked until an unrelated
binder event forces Task A to go back to userspace. All the associated
death notifications will also be delayed until then.
In order to fix this use mmput_async() that will schedule the work in
the corresponding mm->async_put_work WQ instead of Task A. |
In the Linux kernel, the following vulnerability has been resolved:
jfs: fix slab-out-of-bounds Read in dtSearch
Currently while searching for current page in the sorted entry table
of the page there is a out of bound access. Added a bound check to fix
the error.
Dave:
Set return code to -EIO |
In the Linux kernel, the following vulnerability has been resolved:
jfs: fix array-index-out-of-bounds in dbAdjTree
Currently there is a bound check missing in the dbAdjTree while
accessing the dmt_stree. To add the required check added the bool is_ctl
which is required to determine the size as suggest in the following
commit.
https://lore.kernel.org/linux-kernel-mentees/f9475918-2186-49b8-b801-6f0f9e75f4fa@oracle.com/ |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix possible NULL dereference in amdgpu_ras_query_error_status_helper()
Return invalid error code -EINVAL for invalid block id.
Fixes the below:
drivers/gpu/drm/amd/amdgpu/amdgpu_ras.c:1183 amdgpu_ras_query_error_status_helper() error: we previously assumed 'info' could be null (see line 1176) |
In the Linux kernel, the following vulnerability has been resolved:
ceph: fix deadlock or deadcode of misusing dget()
The lock order is incorrect between denty and its parent, we should
always make sure that the parent get the lock first.
But since this deadcode is never used and the parent dir will always
be set from the callers, let's just remove it. |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: fix NULL pointer in channel unregistration function
__dma_async_device_channel_register() can fail. In case of failure,
chan->local is freed (with free_percpu()), and chan->local is nullified.
When dma_async_device_unregister() is called (because of managed API or
intentionally by DMA controller driver), channels are unconditionally
unregistered, leading to this NULL pointer:
[ 1.318693] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000d0
[...]
[ 1.484499] Call trace:
[ 1.486930] device_del+0x40/0x394
[ 1.490314] device_unregister+0x20/0x7c
[ 1.494220] __dma_async_device_channel_unregister+0x68/0xc0
Look at dma_async_device_register() function error path, channel device
unregistration is done only if chan->local is not NULL.
Then add the same condition at the beginning of
__dma_async_device_channel_unregister() function, to avoid NULL pointer
issue whatever the API used to reach this function. |
In the Linux kernel, the following vulnerability has been resolved:
mm/sparsemem: fix race in accessing memory_section->usage
The below race is observed on a PFN which falls into the device memory
region with the system memory configuration where PFN's are such that
[ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL]. Since normal zone start and end
pfn contains the device memory PFN's as well, the compaction triggered
will try on the device memory PFN's too though they end up in NOP(because
pfn_to_online_page() returns NULL for ZONE_DEVICE memory sections). When
from other core, the section mappings are being removed for the
ZONE_DEVICE region, that the PFN in question belongs to, on which
compaction is currently being operated is resulting into the kernel crash
with CONFIG_SPASEMEM_VMEMAP enabled. The crash logs can be seen at [1].
compact_zone() memunmap_pages
------------- ---------------
__pageblock_pfn_to_page
......
(a)pfn_valid():
valid_section()//return true
(b)__remove_pages()->
sparse_remove_section()->
section_deactivate():
[Free the array ms->usage and set
ms->usage = NULL]
pfn_section_valid()
[Access ms->usage which
is NULL]
NOTE: From the above it can be said that the race is reduced to between
the pfn_valid()/pfn_section_valid() and the section deactivate with
SPASEMEM_VMEMAP enabled.
The commit b943f045a9af("mm/sparse: fix kernel crash with
pfn_section_valid check") tried to address the same problem by clearing
the SECTION_HAS_MEM_MAP with the expectation of valid_section() returns
false thus ms->usage is not accessed.
Fix this issue by the below steps:
a) Clear SECTION_HAS_MEM_MAP before freeing the ->usage.
b) RCU protected read side critical section will either return NULL
when SECTION_HAS_MEM_MAP is cleared or can successfully access ->usage.
c) Free the ->usage with kfree_rcu() and set ms->usage = NULL. No
attempt will be made to access ->usage after this as the
SECTION_HAS_MEM_MAP is cleared thus valid_section() return false.
Thanks to David/Pavan for their inputs on this patch.
[1] https://lore.kernel.org/linux-mm/994410bb-89aa-d987-1f50-f514903c55aa@quicinc.com/
On Snapdragon SoC, with the mentioned memory configuration of PFN's as
[ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL], we are able to see bunch of
issues daily while testing on a device farm.
For this particular issue below is the log. Though the below log is
not directly pointing to the pfn_section_valid(){ ms->usage;}, when we
loaded this dump on T32 lauterbach tool, it is pointing.
[ 540.578056] Unable to handle kernel NULL pointer dereference at
virtual address 0000000000000000
[ 540.578068] Mem abort info:
[ 540.578070] ESR = 0x0000000096000005
[ 540.578073] EC = 0x25: DABT (current EL), IL = 32 bits
[ 540.578077] SET = 0, FnV = 0
[ 540.578080] EA = 0, S1PTW = 0
[ 540.578082] FSC = 0x05: level 1 translation fault
[ 540.578085] Data abort info:
[ 540.578086] ISV = 0, ISS = 0x00000005
[ 540.578088] CM = 0, WnR = 0
[ 540.579431] pstate: 82400005 (Nzcv daif +PAN -UAO +TCO -DIT -SSBSBTYPE=--)
[ 540.579436] pc : __pageblock_pfn_to_page+0x6c/0x14c
[ 540.579454] lr : compact_zone+0x994/0x1058
[ 540.579460] sp : ffffffc03579b510
[ 540.579463] x29: ffffffc03579b510 x28: 0000000000235800 x27:000000000000000c
[ 540.579470] x26: 0000000000235c00 x25: 0000000000000068 x24:ffffffc03579b640
[ 540.579477] x23: 0000000000000001 x22: ffffffc03579b660 x21:0000000000000000
[ 540.579483] x20: 0000000000235bff x19: ffffffdebf7e3940 x18:ffffffdebf66d140
[ 540.579489] x17: 00000000739ba063 x16: 00000000739ba063 x15:00000000009f4bff
[ 540.579495] x14: 0000008000000000 x13: 0000000000000000 x12:0000000000000001
[ 540.579501] x11: 0000000000000000 x10: 0000000000000000 x9 :ffffff897d2cd440
[ 540.579507] x8 : 0000000000000000 x7 : 0000000000000000 x6 :ffffffc03579b5b4
[ 540.579512] x5 : 0000000000027f25 x4 : ffffffc03579b5b8 x3 :0000000000000
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential OOBs in smb2_parse_contexts()
Validate offsets and lengths before dereferencing create contexts in
smb2_parse_contexts().
This fixes following oops when accessing invalid create contexts from
server:
BUG: unable to handle page fault for address: ffff8881178d8cc3
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 4a01067 P4D 4a01067 PUD 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 3 PID: 1736 Comm: mount.cifs Not tainted 6.7.0-rc4 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
RIP: 0010:smb2_parse_contexts+0xa0/0x3a0 [cifs]
Code: f8 10 75 13 48 b8 93 ad 25 50 9c b4 11 e7 49 39 06 0f 84 d2 00
00 00 8b 45 00 85 c0 74 61 41 29 c5 48 01 c5 41 83 fd 0f 76 55 <0f> b7
7d 04 0f b7 45 06 4c 8d 74 3d 00 66 83 f8 04 75 bc ba 04 00
RSP: 0018:ffffc900007939e0 EFLAGS: 00010216
RAX: ffffc90000793c78 RBX: ffff8880180cc000 RCX: ffffc90000793c90
RDX: ffffc90000793cc0 RSI: ffff8880178d8cc0 RDI: ffff8880180cc000
RBP: ffff8881178d8cbf R08: ffffc90000793c22 R09: 0000000000000000
R10: ffff8880180cc000 R11: 0000000000000024 R12: 0000000000000000
R13: 0000000000000020 R14: 0000000000000000 R15: ffffc90000793c22
FS: 00007f873753cbc0(0000) GS:ffff88806bc00000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff8881178d8cc3 CR3: 00000000181ca000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
<TASK>
? __die+0x23/0x70
? page_fault_oops+0x181/0x480
? search_module_extables+0x19/0x60
? srso_alias_return_thunk+0x5/0xfbef5
? exc_page_fault+0x1b6/0x1c0
? asm_exc_page_fault+0x26/0x30
? smb2_parse_contexts+0xa0/0x3a0 [cifs]
SMB2_open+0x38d/0x5f0 [cifs]
? smb2_is_path_accessible+0x138/0x260 [cifs]
smb2_is_path_accessible+0x138/0x260 [cifs]
cifs_is_path_remote+0x8d/0x230 [cifs]
cifs_mount+0x7e/0x350 [cifs]
cifs_smb3_do_mount+0x128/0x780 [cifs]
smb3_get_tree+0xd9/0x290 [cifs]
vfs_get_tree+0x2c/0x100
? capable+0x37/0x70
path_mount+0x2d7/0xb80
? srso_alias_return_thunk+0x5/0xfbef5
? _raw_spin_unlock_irqrestore+0x44/0x60
__x64_sys_mount+0x11a/0x150
do_syscall_64+0x47/0xf0
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7f8737657b1e |
An issue was discovered in the Linux kernel through 6.0.10. l2cap_config_req in net/bluetooth/l2cap_core.c has an integer wraparound via L2CAP_CONF_REQ packets. |
A use after free vulnerability was found in prepare_to_relocate in fs/btrfs/relocation.c in btrfs in the Linux Kernel. This possible flaw can be triggered by calling btrfs_ioctl_balance() before calling btrfs_ioctl_defrag(). |
A vulnerability was found in Linux Kernel. It has been declared as problematic. This vulnerability affects the function vsock_connect of the file net/vmw_vsock/af_vsock.c. The manipulation leads to memory leak. The complexity of an attack is rather high. The exploitation appears to be difficult. It is recommended to apply a patch to fix this issue. VDB-211930 is the identifier assigned to this vulnerability. |
A vulnerability classified as problematic has been found in Linux Kernel. Affected is the function j1939_session_destroy of the file net/can/j1939/transport.c. The manipulation leads to memory leak. It is recommended to apply a patch to fix this issue. The identifier of this vulnerability is VDB-211932. |
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer (nvidia.ko), where an integer overflow may lead to information disclosure, data tampering or denial of service. |
The KVM subsystem in the Linux kernel through 4.2.6, and Xen 4.3.x through 4.6.x, allows guest OS users to cause a denial of service (host OS panic or hang) by triggering many #DB (aka Debug) exceptions, related to svm.c. |
Guests can trigger deadlock in Linux netback driver T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] The patch for XSA-392 introduced another issue which might result in a deadlock when trying to free the SKB of a packet dropped due to the XSA-392 handling (CVE-2022-42328). Additionally when dropping packages for other reasons the same deadlock could occur in case of netpoll being active for the interface the xen-netback driver is connected to (CVE-2022-42329). |
Guests can trigger deadlock in Linux netback driver T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] The patch for XSA-392 introduced another issue which might result in a deadlock when trying to free the SKB of a packet dropped due to the XSA-392 handling (CVE-2022-42328). Additionally when dropping packages for other reasons the same deadlock could occur in case of netpoll being active for the interface the xen-netback driver is connected to (CVE-2022-42329). |
Improper Update of Reference Count vulnerability in net/sched of Linux Kernel allows local attacker to cause privilege escalation to root. This issue affects: Linux Kernel versions prior to 5.18; version 4.14 and later versions. |
There exists a use-after-free in io_uring in the Linux kernel. Signalfd_poll() and binder_poll() use a waitqueue whose lifetime is the current task. It will send a POLLFREE notification to all waiters before the queue is freed. Unfortunately, the io_uring poll doesn't handle POLLFREE. This allows a use-after-free to occur if a signalfd or binder fd is polled with io_uring poll, and the waitqueue gets freed. We recommend upgrading past commit fc78b2fc21f10c4c9c4d5d659a685710ffa63659 |
The Salsa20 encryption algorithm in the Linux kernel before 4.14.8 does not correctly handle zero-length inputs, allowing a local attacker able to use the AF_ALG-based skcipher interface (CONFIG_CRYPTO_USER_API_SKCIPHER) to cause a denial of service (uninitialized-memory free and kernel crash) or have unspecified other impact by executing a crafted sequence of system calls that use the blkcipher_walk API. Both the generic implementation (crypto/salsa20_generic.c) and x86 implementation (arch/x86/crypto/salsa20_glue.c) of Salsa20 were vulnerable. |
The mq_notify function in the Linux kernel through 4.11.9 does not set the sock pointer to NULL upon entry into the retry logic. During a user-space close of a Netlink socket, it allows attackers to cause a denial of service (use-after-free) or possibly have unspecified other impact. |