| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Visual Studio Remote Code Execution Vulnerability |
| Visual Studio Remote Code Execution Vulnerability |
| Windows Kernel Elevation of Privilege Vulnerability |
| Windows Kernel Elevation of Privilege Vulnerability |
| DHCP Server Service Denial of Service Vulnerability |
| Sandbox escape due to integer overflow in the Graphics: Canvas2D component. This vulnerability affects Firefox < 143.0.3. |
| An integer overflow vulnerability exists in the QuickJS regular expression engine (libregexp) due to an inconsistent representation of the bytecode buffer size.
* The regular expression bytecode is stored in a DynBuf structure, which correctly uses a $\text{size}\_\text{t}$ (an unsigned type, typically 64-bit) for its size member.
* However, several functions, such as re_emit_op_u32 and other internal parsing routines, incorrectly cast or store this DynBuf $\text{size}\_\text{t}$ value into a signed int (typically 32-bit).
* When a large or complex regular expression (such as those generated by a recursive pattern in a Proof-of-Concept) causes the bytecode size to exceed $2^{31}$ bytes (the maximum positive value for a signed 32-bit integer), the size value wraps around, resulting in a negative integer when stored in the int variable (Integer Overflow).
* This negative value is subsequently used in offset calculations. For example, within functions like re_parse_disjunction, the negative size is used to compute an offset (pos) for patching a jump instruction.
* This negative offset is then incorrectly added to the buffer pointer (s->byte\_code.buf + pos), leading to an out-of-bounds write on the first line of the snippet below:
put_u32(s->byte_code.buf + pos, len); |
| A vulnerability was identified in the handling of Bluetooth Low Energy (BLE) fixed channels (such as SMP or ATT). Specifically, an attacker could exploit a flaw that causes the BLE target (i.e., the device under attack) to attempt to disconnect a fixed channel, which is not allowed per the Bluetooth specification. This leads to undefined behavior, including potential assertion failures, crashes, or memory corruption, depending on the BLE stack implementation. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: ipc4-mtrace: prevent underflow in sof_ipc4_priority_mask_dfs_write()
The "id" comes from the user. Change the type to unsigned to prevent
an array underflow. |
| Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). The supported version that is affected is 7.1.6. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle VM VirtualBox accessible data as well as unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data and unauthorized ability to cause a partial denial of service (partial DOS) of Oracle VM VirtualBox. CVSS 3.1 Base Score 8.1 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:L). |
| In the Linux kernel, the following vulnerability has been resolved:
Squashfs: fix handling and sanity checking of xattr_ids count
A Sysbot [1] corrupted filesystem exposes two flaws in the handling and
sanity checking of the xattr_ids count in the filesystem. Both of these
flaws cause computation overflow due to incorrect typing.
In the corrupted filesystem the xattr_ids value is 4294967071, which
stored in a signed variable becomes the negative number -225.
Flaw 1 (64-bit systems only):
The signed integer xattr_ids variable causes sign extension.
This causes variable overflow in the SQUASHFS_XATTR_*(A) macros. The
variable is first multiplied by sizeof(struct squashfs_xattr_id) where the
type of the sizeof operator is "unsigned long".
On a 64-bit system this is 64-bits in size, and causes the negative number
to be sign extended and widened to 64-bits and then become unsigned. This
produces the very large number 18446744073709548016 or 2^64 - 3600. This
number when rounded up by SQUASHFS_METADATA_SIZE - 1 (8191 bytes) and
divided by SQUASHFS_METADATA_SIZE overflows and produces a length of 0
(stored in len).
Flaw 2 (32-bit systems only):
On a 32-bit system the integer variable is not widened by the unsigned
long type of the sizeof operator (32-bits), and the signedness of the
variable has no effect due it always being treated as unsigned.
The above corrupted xattr_ids value of 4294967071, when multiplied
overflows and produces the number 4294963696 or 2^32 - 3400. This number
when rounded up by SQUASHFS_METADATA_SIZE - 1 (8191 bytes) and divided by
SQUASHFS_METADATA_SIZE overflows again and produces a length of 0.
The effect of the 0 length computation:
In conjunction with the corrupted xattr_ids field, the filesystem also has
a corrupted xattr_table_start value, where it matches the end of
filesystem value of 850.
This causes the following sanity check code to fail because the
incorrectly computed len of 0 matches the incorrect size of the table
reported by the superblock (0 bytes).
len = SQUASHFS_XATTR_BLOCK_BYTES(*xattr_ids);
indexes = SQUASHFS_XATTR_BLOCKS(*xattr_ids);
/*
* The computed size of the index table (len bytes) should exactly
* match the table start and end points
*/
start = table_start + sizeof(*id_table);
end = msblk->bytes_used;
if (len != (end - start))
return ERR_PTR(-EINVAL);
Changing the xattr_ids variable to be "usigned int" fixes the flaw on a
64-bit system. This relies on the fact the computation is widened by the
unsigned long type of the sizeof operator.
Casting the variable to u64 in the above macro fixes this flaw on a 32-bit
system.
It also means 64-bit systems do not implicitly rely on the type of the
sizeof operator to widen the computation.
[1] https://lore.kernel.org/lkml/000000000000cd44f005f1a0f17f@google.com/ |
| A vulnerability exists in the QuickJS engine's BigInt string parsing logic (js_bigint_from_string) when attempting to create a BigInt from a string with an excessively large number of digits.
The function calculates the necessary number of bits (n_bits) required to store the BigInt using the formula:
$$\text{n\_bits} = (\text{n\_digits} \times 27 + 7) / 8 \quad (\text{for radix 10})$$
* For large input strings (e.g., $79,536,432$ digits or more for base 10), the intermediate calculation $(\text{n\_digits} \times 27 + 7)$ exceeds the maximum value of a standard signed 32-bit integer, resulting in an Integer Overflow.
* The resulting n_bits value becomes unexpectedly small or even negative due to this wrap-around.
* This flawed n_bits is then used to compute n_limbs, the number of memory "limbs" needed for the BigInt object. Since n_bits is too small, the calculated n_limbs is also significantly underestimated.
* The function proceeds to allocate a JSBigInt object using this underestimated n_limbs.
* When the function later attempts to write the actual BigInt data into the allocated object, the small buffer size is quickly exceeded, leading to a Heap Out-of-Bounds Write as data is written past the end of the allocated r->tab array. |
| Windows Hyper-V Elevation of Privilege Vulnerability |
| Memory corruption in Graphics Linux while assigning shared virtual memory region during IOCTL call. |
| In the Linux kernel, the following vulnerability has been resolved:
timers/migration: Fix off-by-one root mis-connection
Before attaching a new root to the old root, the children counter of the
new root is checked to verify that only the upcoming CPU's top group have
been connected to it. However since the recently added commit b729cc1ec21a
("timers/migration: Fix another race between hotplug and idle entry/exit")
this check is not valid anymore because the old root is pre-accounted
as a child to the new root. Therefore after connecting the upcoming
CPU's top group to the new root, the children count to be expected must
be 2 and not 1 anymore.
This omission results in the old root to not be connected to the new
root. Then eventually the system may run with more than one top level,
which defeats the purpose of a single idle migrator.
Also the old root is pre-accounted but not connected upon the new root
creation. But it can be connected to the new root later on. Therefore
the old root may be accounted twice to the new root. The propagation of
such overcommit can end up creating a double final top-level root with a
groupmask incorrectly initialized. Although harmless given that the final
top level roots will never have a parent to walk up to, this oddity
opportunistically reported the core issue:
WARNING: CPU: 8 PID: 0 at kernel/time/timer_migration.c:543 tmigr_requires_handle_remote
CPU: 8 UID: 0 PID: 0 Comm: swapper/8
RIP: 0010:tmigr_requires_handle_remote
Call Trace:
<IRQ>
? tmigr_requires_handle_remote
? hrtimer_run_queues
update_process_times
tick_periodic
tick_handle_periodic
__sysvec_apic_timer_interrupt
sysvec_apic_timer_interrupt
</IRQ>
Fix the problem by taking the old root into account in the children count
of the new root so the connection is not omitted.
Also warn when more than one top level group exists to better detect
similar issues in the future. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/compaction: fix UBSAN shift-out-of-bounds warning
syzkaller reported a UBSAN shift-out-of-bounds warning of (1UL << order)
in isolate_freepages_block(). The bogus compound_order can be any value
because it is union with flags. Add back the MAX_PAGE_ORDER check to fix
the warning. |
| Integer Overflow vulnerability in SQLite SQLite3 v.3.50.0 allows a remote attacker to cause a denial of service via the setupLookaside function |
| An integer overflow was addressed with improved input validation. This issue is fixed in Security Update 2021-005 Catalina, iOS 14.8 and iPadOS 14.8, macOS Big Sur 11.6, watchOS 7.6.2. Processing a maliciously crafted PDF may lead to arbitrary code execution. Apple is aware of a report that this issue may have been actively exploited. |
| Integer overflow or wraparound in Windows Fast FAT Driver allows an unauthorized attacker to execute code locally. |
| Azure RTOS USBx is a USB host, device, and on-the-go (OTG) embedded stack, fully integrated with Azure RTOS ThreadX and available for all Azure RTOS ThreadX–supported processors. Azure RTOS USBX implementation of host support for USB CDC ECM includes an integer underflow and a buffer overflow in the `_ux_host_class_cdc_ecm_mac_address_get` function which may be potentially exploited to achieve remote code execution or denial of service. Setting mac address string descriptor length to a `0` or `1` allows an attacker to introduce an integer underflow followed (string_length) by a buffer overflow of the `cdc_ecm -> ux_host_class_cdc_ecm_node_id` array. This may allow one to redirect the code execution flow or introduce a denial of service. The fix has been included in USBX release [6.1.12](https://github.com/azure-rtos/usbx/releases/tag/v6.1.12_rel). Improved mac address string descriptor length validation to check for unexpectedly small values may be used as a workaround. |