| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
gpiolib: cdev: Fix use after free in lineinfo_changed_notify
The use-after-free issue occurs as follows: when the GPIO chip device file
is being closed by invoking gpio_chrdev_release(), watched_lines is freed
by bitmap_free(), but the unregistration of lineinfo_changed_nb notifier
chain failed due to waiting write rwsem. Additionally, one of the GPIO
chip's lines is also in the release process and holds the notifier chain's
read rwsem. Consequently, a race condition leads to the use-after-free of
watched_lines.
Here is the typical stack when issue happened:
[free]
gpio_chrdev_release()
--> bitmap_free(cdev->watched_lines) <-- freed
--> blocking_notifier_chain_unregister()
--> down_write(&nh->rwsem) <-- waiting rwsem
--> __down_write_common()
--> rwsem_down_write_slowpath()
--> schedule_preempt_disabled()
--> schedule()
[use]
st54spi_gpio_dev_release()
--> gpio_free()
--> gpiod_free()
--> gpiod_free_commit()
--> gpiod_line_state_notify()
--> blocking_notifier_call_chain()
--> down_read(&nh->rwsem); <-- held rwsem
--> notifier_call_chain()
--> lineinfo_changed_notify()
--> test_bit(xxxx, cdev->watched_lines) <-- use after free
The side effect of the use-after-free issue is that a GPIO line event is
being generated for userspace where it shouldn't. However, since the chrdev
is being closed, userspace won't have the chance to read that event anyway.
To fix the issue, call the bitmap_free() function after the unregistration
of lineinfo_changed_nb notifier chain. |
| FreeRDP is a free remote desktop protocol library and clients. Affected versions of FreeRDP are missing input validation in `urbdrc` channel. A malicious server can trick a FreeRDP based client to crash with division by zero. This issue has been addressed in version 2.9.0. All users are advised to upgrade. Users unable to upgrade should not use the `/usb` redirection switch. |
| A race condition vulnerability has been identified in Shopware's voucher system of Shopware v6.6.10.4 that allows attackers to bypass intended voucher restrictions and exceed usage limitations. |
| Race condition in Canonical apport up to and including 2.32.0 allows a local attacker to leak sensitive information via PID-reuse by leveraging namespaces.
When handling a crash, the function `_check_global_pid_and_forward`, which detects if the crashing process resided in a container, was being called before `consistency_checks`, which attempts to detect if the crashing process had been replaced. Because of this, if a process crashed and was quickly replaced with a containerized one, apport could be made to forward the core dump to the container, potentially leaking sensitive information. `consistency_checks` is now being called before `_check_global_pid_and_forward`. Additionally, given that the PID-reuse race condition cannot be reliably detected from userspace alone, crashes are only forwarded to containers if the kernel provided a pidfd, or if the crashing process was unprivileged (i.e., if dump mode == 1). |
| A logic error was addressed with improved error handling. This issue is fixed in macOS Sequoia 15.6. iCloud Private Relay may not activate when more than one user is logged in at the same time. |
| A race condition was addressed with additional validation. This issue is fixed in macOS Sequoia 15.6, macOS Sonoma 14.7.7, macOS Ventura 13.7.7. An app may be able to break out of its sandbox. |
| A race condition was addressed with improved state handling. This issue is fixed in macOS Sequoia 15.6, macOS Sonoma 14.7.7, macOS Ventura 13.7.7. An app may be able to cause unexpected system termination. |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: drr: Fix double list add in class with netem as child qdisc
As described in Gerrard's report [1], there are use cases where a netem
child qdisc will make the parent qdisc's enqueue callback reentrant.
In the case of drr, there won't be a UAF, but the code will add the same
classifier to the list twice, which will cause memory corruption.
In addition to checking for qlen being zero, this patch checks whether the
class was already added to the active_list (cl_is_active) before adding
to the list to cover for the reentrant case.
[1] https://lore.kernel.org/netdev/CAHcdcOm+03OD2j6R0=YHKqmy=VgJ8xEOKuP6c7mSgnp-TEJJbw@mail.gmail.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: qfq: Fix double list add in class with netem as child qdisc
As described in Gerrard's report [1], there are use cases where a netem
child qdisc will make the parent qdisc's enqueue callback reentrant.
In the case of qfq, there won't be a UAF, but the code will add the same
classifier to the list twice, which will cause memory corruption.
This patch checks whether the class was already added to the agg->active
list (cl_is_active) before doing the addition to cater for the reentrant
case.
[1] https://lore.kernel.org/netdev/CAHcdcOm+03OD2j6R0=YHKqmy=VgJ8xEOKuP6c7mSgnp-TEJJbw@mail.gmail.com/ |
| Floating point exception in fig2dev in version 3.2.9a allows an attacker to availability via local input manipulation via get_slope function. |
| A race condition vulnerability exists in the aVideoEncoder.json.php unzip functionality of WWBN AVideo 14.4 and dev master commit 8a8954ff. A series of specially crafted HTTP request can lead to arbitrary code execution. |
| In the Linux kernel, the following vulnerability has been resolved:
net: mvpp2: Prevent parser TCAM memory corruption
Protect the parser TCAM/SRAM memory, and the cached (shadow) SRAM
information, from concurrent modifications.
Both the TCAM and SRAM tables are indirectly accessed by configuring
an index register that selects the row to read or write to. This means
that operations must be atomic in order to, e.g., avoid spreading
writes across multiple rows. Since the shadow SRAM array is used to
find free rows in the hardware table, it must also be protected in
order to avoid TOCTOU errors where multiple cores allocate the same
row.
This issue was detected in a situation where `mvpp2_set_rx_mode()` ran
concurrently on two CPUs. In this particular case the
MVPP2_PE_MAC_UC_PROMISCUOUS entry was corrupted, causing the
classifier unit to drop all incoming unicast - indicated by the
`rx_classifier_drops` counter. |
| In the Linux kernel, the following vulnerability has been resolved:
media: streamzap: fix race between device disconnection and urb callback
Syzkaller has reported a general protection fault at function
ir_raw_event_store_with_filter(). This crash is caused by a NULL pointer
dereference of dev->raw pointer, even though it is checked for NULL in
the same function, which means there is a race condition. It occurs due
to the incorrect order of actions in the streamzap_disconnect() function:
rc_unregister_device() is called before usb_kill_urb(). The dev->raw
pointer is freed and set to NULL in rc_unregister_device(), and only
after that usb_kill_urb() waits for in-progress requests to finish.
If rc_unregister_device() is called while streamzap_callback() handler is
not finished, this can lead to accessing freed resources. Thus
rc_unregister_device() should be called after usb_kill_urb().
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix type confusion via race condition when using ipc_msg_send_request
req->handle is allocated using ksmbd_acquire_id(&ipc_ida), based on
ida_alloc. req->handle from ksmbd_ipc_login_request and
FSCTL_PIPE_TRANSCEIVE ioctl can be same and it could lead to type confusion
between messages, resulting in access to unexpected parts of memory after
an incorrect delivery. ksmbd check type of ipc response but missing add
continue to check next ipc reponse. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: aggregator: protect driver attr handlers against module unload
Both new_device_store and delete_device_store touch module global
resources (e.g. gpio_aggregator_lock). To prevent race conditions with
module unload, a reference needs to be held.
Add try_module_get() in these handlers.
For new_device_store, this eliminates what appears to be the most dangerous
scenario: if an id is allocated from gpio_aggregator_idr but
platform_device_register has not yet been called or completed, a concurrent
module unload could fail to unregister/delete the device, leaving behind a
dangling platform device/GPIO forwarder. This can result in various issues.
The following simple reproducer demonstrates these problems:
#!/bin/bash
while :; do
# note: whether 'gpiochip0 0' exists or not does not matter.
echo 'gpiochip0 0' > /sys/bus/platform/drivers/gpio-aggregator/new_device
done &
while :; do
modprobe gpio-aggregator
modprobe -r gpio-aggregator
done &
wait
Starting with the following warning, several kinds of warnings will appear
and the system may become unstable:
------------[ cut here ]------------
list_del corruption, ffff888103e2e980->next is LIST_POISON1 (dead000000000100)
WARNING: CPU: 1 PID: 1327 at lib/list_debug.c:56 __list_del_entry_valid_or_report+0xa3/0x120
[...]
RIP: 0010:__list_del_entry_valid_or_report+0xa3/0x120
[...]
Call Trace:
<TASK>
? __list_del_entry_valid_or_report+0xa3/0x120
? __warn.cold+0x93/0xf2
? __list_del_entry_valid_or_report+0xa3/0x120
? report_bug+0xe6/0x170
? __irq_work_queue_local+0x39/0xe0
? handle_bug+0x58/0x90
? exc_invalid_op+0x13/0x60
? asm_exc_invalid_op+0x16/0x20
? __list_del_entry_valid_or_report+0xa3/0x120
gpiod_remove_lookup_table+0x22/0x60
new_device_store+0x315/0x350 [gpio_aggregator]
kernfs_fop_write_iter+0x137/0x1f0
vfs_write+0x262/0x430
ksys_write+0x60/0xd0
do_syscall_64+0x6c/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
[...]
</TASK>
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix 'scheduling while atomic' in mptcp_pm_nl_append_new_local_addr
If multiple connection requests attempt to create an implicit mptcp
endpoint in parallel, more than one caller may end up in
mptcp_pm_nl_append_new_local_addr because none found the address in
local_addr_list during their call to mptcp_pm_nl_get_local_id. In this
case, the concurrent new_local_addr calls may delete the address entry
created by the previous caller. These deletes use synchronize_rcu, but
this is not permitted in some of the contexts where this function may be
called. During packet recv, the caller may be in a rcu read critical
section and have preemption disabled.
An example stack:
BUG: scheduling while atomic: swapper/2/0/0x00000302
Call Trace:
<IRQ>
dump_stack_lvl (lib/dump_stack.c:117 (discriminator 1))
dump_stack (lib/dump_stack.c:124)
__schedule_bug (kernel/sched/core.c:5943)
schedule_debug.constprop.0 (arch/x86/include/asm/preempt.h:33 kernel/sched/core.c:5970)
__schedule (arch/x86/include/asm/jump_label.h:27 include/linux/jump_label.h:207 kernel/sched/features.h:29 kernel/sched/core.c:6621)
schedule (arch/x86/include/asm/preempt.h:84 kernel/sched/core.c:6804 kernel/sched/core.c:6818)
schedule_timeout (kernel/time/timer.c:2160)
wait_for_completion (kernel/sched/completion.c:96 kernel/sched/completion.c:116 kernel/sched/completion.c:127 kernel/sched/completion.c:148)
__wait_rcu_gp (include/linux/rcupdate.h:311 kernel/rcu/update.c:444)
synchronize_rcu (kernel/rcu/tree.c:3609)
mptcp_pm_nl_append_new_local_addr (net/mptcp/pm_netlink.c:966 net/mptcp/pm_netlink.c:1061)
mptcp_pm_nl_get_local_id (net/mptcp/pm_netlink.c:1164)
mptcp_pm_get_local_id (net/mptcp/pm.c:420)
subflow_check_req (net/mptcp/subflow.c:98 net/mptcp/subflow.c:213)
subflow_v4_route_req (net/mptcp/subflow.c:305)
tcp_conn_request (net/ipv4/tcp_input.c:7216)
subflow_v4_conn_request (net/mptcp/subflow.c:651)
tcp_rcv_state_process (net/ipv4/tcp_input.c:6709)
tcp_v4_do_rcv (net/ipv4/tcp_ipv4.c:1934)
tcp_v4_rcv (net/ipv4/tcp_ipv4.c:2334)
ip_protocol_deliver_rcu (net/ipv4/ip_input.c:205 (discriminator 1))
ip_local_deliver_finish (include/linux/rcupdate.h:813 net/ipv4/ip_input.c:234)
ip_local_deliver (include/linux/netfilter.h:314 include/linux/netfilter.h:308 net/ipv4/ip_input.c:254)
ip_sublist_rcv_finish (include/net/dst.h:461 net/ipv4/ip_input.c:580)
ip_sublist_rcv (net/ipv4/ip_input.c:640)
ip_list_rcv (net/ipv4/ip_input.c:675)
__netif_receive_skb_list_core (net/core/dev.c:5583 net/core/dev.c:5631)
netif_receive_skb_list_internal (net/core/dev.c:5685 net/core/dev.c:5774)
napi_complete_done (include/linux/list.h:37 include/net/gro.h:449 include/net/gro.h:444 net/core/dev.c:6114)
igb_poll (drivers/net/ethernet/intel/igb/igb_main.c:8244) igb
__napi_poll (net/core/dev.c:6582)
net_rx_action (net/core/dev.c:6653 net/core/dev.c:6787)
handle_softirqs (kernel/softirq.c:553)
__irq_exit_rcu (kernel/softirq.c:588 kernel/softirq.c:427 kernel/softirq.c:636)
irq_exit_rcu (kernel/softirq.c:651)
common_interrupt (arch/x86/kernel/irq.c:247 (discriminator 14))
</IRQ>
This problem seems particularly prevalent if the user advertises an
endpoint that has a different external vs internal address. In the case
where the external address is advertised and multiple connections
already exist, multiple subflow SYNs arrive in parallel which tends to
trigger the race during creation of the first local_addr_list entries
which have the internal address instead.
Fix by skipping the replacement of an existing implicit local address if
called via mptcp_pm_nl_get_local_id. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: nl80211: reject cooked mode if it is set along with other flags
It is possible to set both MONITOR_FLAG_COOK_FRAMES and MONITOR_FLAG_ACTIVE
flags simultaneously on the same monitor interface from the userspace. This
causes a sub-interface to be created with no IEEE80211_SDATA_IN_DRIVER bit
set because the monitor interface is in the cooked state and it takes
precedence over all other states. When the interface is then being deleted
the kernel calls WARN_ONCE() from check_sdata_in_driver() because of missing
that bit.
Fix this by rejecting MONITOR_FLAG_COOK_FRAMES if it is set along with
other flags.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Avoid potential division by zero in function_stat_show()
Check whether denominator expression x * (x - 1) * 1000 mod {2^32, 2^64}
produce zero and skip stddev computation in that case.
For now don't care about rec->counter * rec->counter overflow because
rec->time * rec->time overflow will likely happen earlier. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix oops due to unset link speed
It isn't guaranteed that NETWORK_INTERFACE_INFO::LinkSpeed will always
be set by the server, so the client must handle any values and then
prevent oopses like below from happening:
Oops: divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 0 UID: 0 PID: 1323 Comm: cat Not tainted 6.13.0-rc7 #2
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-3.fc41
04/01/2014
RIP: 0010:cifs_debug_data_proc_show+0xa45/0x1460 [cifs] Code: 00 00 48
89 df e8 3b cd 1b c1 41 f6 44 24 2c 04 0f 84 50 01 00 00 48 89 ef e8
e7 d0 1b c1 49 8b 44 24 18 31 d2 49 8d 7c 24 28 <48> f7 74 24 18 48 89
c3 e8 6e cf 1b c1 41 8b 6c 24 28 49 8d 7c 24
RSP: 0018:ffffc90001817be0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff88811230022c RCX: ffffffffc041bd99
RDX: 0000000000000000 RSI: 0000000000000567 RDI: ffff888112300228
RBP: ffff888112300218 R08: fffff52000302f5f R09: ffffed1022fa58ac
R10: ffff888117d2c566 R11: 00000000fffffffe R12: ffff888112300200
R13: 000000012a15343f R14: 0000000000000001 R15: ffff888113f2db58
FS: 00007fe27119e740(0000) GS:ffff888148600000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fe2633c5000 CR3: 0000000124da0000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
<TASK>
? __die_body.cold+0x19/0x27
? die+0x2e/0x50
? do_trap+0x159/0x1b0
? cifs_debug_data_proc_show+0xa45/0x1460 [cifs]
? do_error_trap+0x90/0x130
? cifs_debug_data_proc_show+0xa45/0x1460 [cifs]
? exc_divide_error+0x39/0x50
? cifs_debug_data_proc_show+0xa45/0x1460 [cifs]
? asm_exc_divide_error+0x1a/0x20
? cifs_debug_data_proc_show+0xa39/0x1460 [cifs]
? cifs_debug_data_proc_show+0xa45/0x1460 [cifs]
? seq_read_iter+0x42e/0x790
seq_read_iter+0x19a/0x790
proc_reg_read_iter+0xbe/0x110
? __pfx_proc_reg_read_iter+0x10/0x10
vfs_read+0x469/0x570
? do_user_addr_fault+0x398/0x760
? __pfx_vfs_read+0x10/0x10
? find_held_lock+0x8a/0xa0
? __pfx_lock_release+0x10/0x10
ksys_read+0xd3/0x170
? __pfx_ksys_read+0x10/0x10
? __rcu_read_unlock+0x50/0x270
? mark_held_locks+0x1a/0x90
do_syscall_64+0xbb/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fe271288911
Code: 00 48 8b 15 01 25 10 00 f7 d8 64 89 02 b8 ff ff ff ff eb bd e8
20 ad 01 00 f3 0f 1e fa 80 3d b5 a7 10 00 00 74 13 31 c0 0f 05 <48> 3d
00 f0 ff ff 77 4f c3 66 0f 1f 44 00 00 55 48 89 e5 48 83 ec
RSP: 002b:00007ffe87c079d8 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
RAX: ffffffffffffffda RBX: 0000000000040000 RCX: 00007fe271288911
RDX: 0000000000040000 RSI: 00007fe2633c6000 RDI: 0000000000000003
RBP: 00007ffe87c07a00 R08: 0000000000000000 R09: 00007fe2713e6380
R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000040000
R13: 00007fe2633c6000 R14: 0000000000000003 R15: 0000000000000000
</TASK>
Fix this by setting cifs_server_iface::speed to a sane value (1Gbps)
by default when link speed is unset. |
| In the Linux kernel, the following vulnerability has been resolved:
net: rose: fix timer races against user threads
Rose timers only acquire the socket spinlock, without
checking if the socket is owned by one user thread.
Add a check and rearm the timers if needed.
BUG: KASAN: slab-use-after-free in rose_timer_expiry+0x31d/0x360 net/rose/rose_timer.c:174
Read of size 2 at addr ffff88802f09b82a by task swapper/0/0
CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.13.0-rc5-syzkaller-00172-gd1bf27c4e176 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
rose_timer_expiry+0x31d/0x360 net/rose/rose_timer.c:174
call_timer_fn+0x187/0x650 kernel/time/timer.c:1793
expire_timers kernel/time/timer.c:1844 [inline]
__run_timers kernel/time/timer.c:2418 [inline]
__run_timer_base+0x66a/0x8e0 kernel/time/timer.c:2430
run_timer_base kernel/time/timer.c:2439 [inline]
run_timer_softirq+0xb7/0x170 kernel/time/timer.c:2449
handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:561
__do_softirq kernel/softirq.c:595 [inline]
invoke_softirq kernel/softirq.c:435 [inline]
__irq_exit_rcu+0xf7/0x220 kernel/softirq.c:662
irq_exit_rcu+0x9/0x30 kernel/softirq.c:678
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline]
sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1049
</IRQ> |