Search Results (323571 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53613 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dax: Fix dax_mapping_release() use after free A CONFIG_DEBUG_KOBJECT_RELEASE test of removing a device-dax region provider (like modprobe -r dax_hmem) yields: kobject: 'mapping0' (ffff93eb460e8800): kobject_release, parent 0000000000000000 (delayed 2000) [..] DEBUG_LOCKS_WARN_ON(1) WARNING: CPU: 23 PID: 282 at kernel/locking/lockdep.c:232 __lock_acquire+0x9fc/0x2260 [..] RIP: 0010:__lock_acquire+0x9fc/0x2260 [..] Call Trace: <TASK> [..] lock_acquire+0xd4/0x2c0 ? ida_free+0x62/0x130 _raw_spin_lock_irqsave+0x47/0x70 ? ida_free+0x62/0x130 ida_free+0x62/0x130 dax_mapping_release+0x1f/0x30 device_release+0x36/0x90 kobject_delayed_cleanup+0x46/0x150 Due to attempting ida_free() on an ida object that has already been freed. Devices typically only hold a reference on their parent while registered. If a child needs a parent object to complete its release it needs to hold a reference that it drops from its release callback. Arrange for a dax_mapping to pin its parent dev_dax instance until dax_mapping_release().
CVE-2023-53608 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix potential UAF of struct nilfs_sc_info in nilfs_segctor_thread() The finalization of nilfs_segctor_thread() can race with nilfs_segctor_kill_thread() which terminates that thread, potentially causing a use-after-free BUG as KASAN detected. At the end of nilfs_segctor_thread(), it assigns NULL to "sc_task" member of "struct nilfs_sc_info" to indicate the thread has finished, and then notifies nilfs_segctor_kill_thread() of this using waitqueue "sc_wait_task" on the struct nilfs_sc_info. However, here, immediately after the NULL assignment to "sc_task", it is possible that nilfs_segctor_kill_thread() will detect it and return to continue the deallocation, freeing the nilfs_sc_info structure before the thread does the notification. This fixes the issue by protecting the NULL assignment to "sc_task" and its notification, with spinlock "sc_state_lock" of the struct nilfs_sc_info. Since nilfs_segctor_kill_thread() does a final check to see if "sc_task" is NULL with "sc_state_lock" locked, this can eliminate the race.
CVE-2023-53606 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfsd: clean up potential nfsd_file refcount leaks in COPY codepath There are two different flavors of the nfsd4_copy struct. One is embedded in the compound and is used directly in synchronous copies. The other is dynamically allocated, refcounted and tracked in the client struture. For the embedded one, the cleanup just involves releasing any nfsd_files held on its behalf. For the async one, the cleanup is a bit more involved, and we need to dequeue it from lists, unhash it, etc. There is at least one potential refcount leak in this code now. If the kthread_create call fails, then both the src and dst nfsd_files in the original nfsd4_copy object are leaked. The cleanup in this codepath is also sort of weird. In the async copy case, we'll have up to four nfsd_file references (src and dst for both flavors of copy structure). They are both put at the end of nfsd4_do_async_copy, even though the ones held on behalf of the embedded one outlive that structure. Change it so that we always clean up the nfsd_file refs held by the embedded copy structure before nfsd4_copy returns. Rework cleanup_async_copy to handle both inter and intra copies. Eliminate nfsd4_cleanup_intra_ssc since it now becomes a no-op.
CVE-2023-53602 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix memory leak in WMI firmware stats Memory allocated for firmware pdev, vdev and beacon statistics are not released during rmmod. Fix it by calling ath11k_fw_stats_free() function before hardware unregister. While at it, avoid calling ath11k_fw_stats_free() while processing the firmware stats received in the WMI event because the local list is getting spliced and reinitialised and hence there are no elements in the list after splicing. Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1
CVE-2023-53599 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: af_alg - Fix missing initialisation affecting gcm-aes-s390 Fix af_alg_alloc_areq() to initialise areq->first_rsgl.sgl.sgt.sgl to point to the scatterlist array in areq->first_rsgl.sgl.sgl. Without this, the gcm-aes-s390 driver will oops when it tries to do gcm_walk_start() on req->dst because req->dst is set to the value of areq->first_rsgl.sgl.sgl by _aead_recvmsg() calling aead_request_set_crypt(). The problem comes if an empty ciphertext is passed: the loop in af_alg_get_rsgl() just passes straight out and doesn't set areq->first_rsgl up. This isn't a problem on x86_64 using gcmaes_crypt_by_sg() because, as far as I can tell, that ignores req->dst and only uses req->src[*]. [*] Is this a bug in aesni-intel_glue.c? The s390x oops looks something like: Unable to handle kernel pointer dereference in virtual kernel address space Failing address: 0000000a00000000 TEID: 0000000a00000803 Fault in home space mode while using kernel ASCE. AS:00000000a43a0007 R3:0000000000000024 Oops: 003b ilc:2 [#1] SMP ... Call Trace: [<000003ff7fc3d47e>] gcm_walk_start+0x16/0x28 [aes_s390] [<00000000a2a342f2>] crypto_aead_decrypt+0x9a/0xb8 [<00000000a2a60888>] aead_recvmsg+0x478/0x698 [<00000000a2e519a0>] sock_recvmsg+0x70/0xb0 [<00000000a2e51a56>] sock_read_iter+0x76/0xa0 [<00000000a273e066>] vfs_read+0x26e/0x2a8 [<00000000a273e8c4>] ksys_read+0xbc/0x100 [<00000000a311d808>] __do_syscall+0x1d0/0x1f8 [<00000000a312ff30>] system_call+0x70/0x98 Last Breaking-Event-Address: [<000003ff7fc3e6b4>] gcm_aes_crypt+0x104/0xa68 [aes_s390]
CVE-2023-53597 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: fix mid leak during reconnection after timeout threshold When the number of responses with status of STATUS_IO_TIMEOUT exceeds a specified threshold (NUM_STATUS_IO_TIMEOUT), we reconnect the connection. But we do not return the mid, or the credits returned for the mid, or reduce the number of in-flight requests. This bug could result in the server->in_flight count to go bad, and also cause a leak in the mids. This change moves the check to a few lines below where the response is decrypted, even of the response is read from the transform header. This way, the code for returning the mids can be reused. Also, the cifs_reconnect was reconnecting just the transport connection before. In case of multi-channel, this may not be what we want to do after several timeouts. Changed that to reconnect the session and the tree too. Also renamed NUM_STATUS_IO_TIMEOUT to a more appropriate name MAX_STATUS_IO_TIMEOUT.
CVE-2023-53596 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drivers: base: Free devm resources when unregistering a device In the current code, devres_release_all() only gets called if the device has a bus and has been probed. This leads to issues when using bus-less or driver-less devices where the device might never get freed if a managed resource holds a reference to the device. This is happening in the DRM framework for example. We should thus call devres_release_all() in the device_del() function to make sure that the device-managed actions are properly executed when the device is unregistered, even if it has neither a bus nor a driver. This is effectively the same change than commit 2f8d16a996da ("devres: release resources on device_del()") that got reverted by commit a525a3ddeaca ("driver core: free devres in device_release") over memory leaks concerns. This patch effectively combines the two commits mentioned above to release the resources both on device_del() and device_release() and get the best of both worlds.
CVE-2023-53595 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: mcs: Fix NULL pointer dereferences When system is rebooted after creating macsec interface below NULL pointer dereference crashes occurred. This patch fixes those crashes by using correct order of teardown [ 3324.406942] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 3324.415726] Mem abort info: [ 3324.418510] ESR = 0x96000006 [ 3324.421557] EC = 0x25: DABT (current EL), IL = 32 bits [ 3324.426865] SET = 0, FnV = 0 [ 3324.429913] EA = 0, S1PTW = 0 [ 3324.433047] Data abort info: [ 3324.435921] ISV = 0, ISS = 0x00000006 [ 3324.439748] CM = 0, WnR = 0 .... [ 3324.575915] Call trace: [ 3324.578353] cn10k_mdo_del_secy+0x24/0x180 [ 3324.582440] macsec_common_dellink+0xec/0x120 [ 3324.586788] macsec_notify+0x17c/0x1c0 [ 3324.590529] raw_notifier_call_chain+0x50/0x70 [ 3324.594965] call_netdevice_notifiers_info+0x34/0x7c [ 3324.599921] rollback_registered_many+0x354/0x5bc [ 3324.604616] unregister_netdevice_queue+0x88/0x10c [ 3324.609399] unregister_netdev+0x20/0x30 [ 3324.613313] otx2_remove+0x8c/0x310 [ 3324.616794] pci_device_shutdown+0x30/0x70 [ 3324.620882] device_shutdown+0x11c/0x204 [ 966.664930] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 966.673712] Mem abort info: [ 966.676497] ESR = 0x96000006 [ 966.679543] EC = 0x25: DABT (current EL), IL = 32 bits [ 966.684848] SET = 0, FnV = 0 [ 966.687895] EA = 0, S1PTW = 0 [ 966.691028] Data abort info: [ 966.693900] ISV = 0, ISS = 0x00000006 [ 966.697729] CM = 0, WnR = 0 [ 966.833467] Call trace: [ 966.835904] cn10k_mdo_stop+0x20/0xa0 [ 966.839557] macsec_dev_stop+0xe8/0x11c [ 966.843384] __dev_close_many+0xbc/0x140 [ 966.847298] dev_close_many+0x84/0x120 [ 966.851039] rollback_registered_many+0x114/0x5bc [ 966.855735] unregister_netdevice_many.part.0+0x14/0xa0 [ 966.860952] unregister_netdevice_many+0x18/0x24 [ 966.865560] macsec_notify+0x1ac/0x1c0 [ 966.869303] raw_notifier_call_chain+0x50/0x70 [ 966.873738] call_netdevice_notifiers_info+0x34/0x7c [ 966.878694] rollback_registered_many+0x354/0x5bc [ 966.883390] unregister_netdevice_queue+0x88/0x10c [ 966.888173] unregister_netdev+0x20/0x30 [ 966.892090] otx2_remove+0x8c/0x310 [ 966.895571] pci_device_shutdown+0x30/0x70 [ 966.899660] device_shutdown+0x11c/0x204 [ 966.903574] __do_sys_reboot+0x208/0x290 [ 966.907487] __arm64_sys_reboot+0x20/0x30 [ 966.911489] el0_svc_handler+0x80/0x1c0 [ 966.915316] el0_svc+0x8/0x180 [ 966.918362] Code: f9400000 f9400a64 91220014 f94b3403 (f9400060) [ 966.924448] ---[ end trace 341778e799c3d8d7 ]---
CVE-2023-53592 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gpio: sifive: Fix refcount leak in sifive_gpio_probe of_irq_find_parent() returns a node pointer with refcount incremented, We should use of_node_put() on it when not needed anymore. Add missing of_node_put() to avoid refcount leak.
CVE-2023-53590 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: sctp: add a refcnt in sctp_stream_priorities to avoid a nested loop With this refcnt added in sctp_stream_priorities, we don't need to traverse all streams to check if the prio is used by other streams when freeing one stream's prio in sctp_sched_prio_free_sid(). This can avoid a nested loop (up to 65535 * 65535), which may cause a stuck as Ying reported: watchdog: BUG: soft lockup - CPU#23 stuck for 26s! [ksoftirqd/23:136] Call Trace: <TASK> sctp_sched_prio_free_sid+0xab/0x100 [sctp] sctp_stream_free_ext+0x64/0xa0 [sctp] sctp_stream_free+0x31/0x50 [sctp] sctp_association_free+0xa5/0x200 [sctp] Note that it doesn't need to use refcount_t type for this counter, as its accessing is always protected under the sock lock. v1->v2: - add a check in sctp_sched_prio_set to avoid the possible prio_head refcnt overflow.
CVE-2023-53589 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: don't trust firmware n_channels If the firmware sends us a corrupted MCC response with n_channels much larger than the command response can be, we might copy far too much (uninitialized) memory and even crash if the n_channels is large enough to make it run out of the one page allocated for the FW response. Fix that by checking the lengths. Doing a < comparison would be sufficient, but the firmware should be doing it correctly, so check more strictly.
CVE-2023-53588 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: check for station first in client probe When probing a client, first check if we have it, and then check for the channel context, otherwise you can trigger the warning there easily by probing when the AP isn't even started yet. Since a client existing means the AP is also operating, we can then keep the warning. Also simplify the moved code a bit.
CVE-2023-53587 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Sync IRQ works before buffer destruction If something was written to the buffer just before destruction, it may be possible (maybe not in a real system, but it did happen in ARCH=um with time-travel) to destroy the ringbuffer before the IRQ work ran, leading this KASAN report (or a crash without KASAN): BUG: KASAN: slab-use-after-free in irq_work_run_list+0x11a/0x13a Read of size 8 at addr 000000006d640a48 by task swapper/0 CPU: 0 PID: 0 Comm: swapper Tainted: G W O 6.3.0-rc1 #7 Stack: 60c4f20f 0c203d48 41b58ab3 60f224fc 600477fa 60f35687 60c4f20f 601273dd 00000008 6101eb00 6101eab0 615be548 Call Trace: [<60047a58>] show_stack+0x25e/0x282 [<60c609e0>] dump_stack_lvl+0x96/0xfd [<60c50d4c>] print_report+0x1a7/0x5a8 [<603078d3>] kasan_report+0xc1/0xe9 [<60308950>] __asan_report_load8_noabort+0x1b/0x1d [<60232844>] irq_work_run_list+0x11a/0x13a [<602328b4>] irq_work_tick+0x24/0x34 [<6017f9dc>] update_process_times+0x162/0x196 [<6019f335>] tick_sched_handle+0x1a4/0x1c3 [<6019fd9e>] tick_sched_timer+0x79/0x10c [<601812b9>] __hrtimer_run_queues.constprop.0+0x425/0x695 [<60182913>] hrtimer_interrupt+0x16c/0x2c4 [<600486a3>] um_timer+0x164/0x183 [...] Allocated by task 411: save_stack_trace+0x99/0xb5 stack_trace_save+0x81/0x9b kasan_save_stack+0x2d/0x54 kasan_set_track+0x34/0x3e kasan_save_alloc_info+0x25/0x28 ____kasan_kmalloc+0x8b/0x97 __kasan_kmalloc+0x10/0x12 __kmalloc+0xb2/0xe8 load_elf_phdrs+0xee/0x182 [...] The buggy address belongs to the object at 000000006d640800 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 584 bytes inside of freed 1024-byte region [000000006d640800, 000000006d640c00) Add the appropriate irq_work_sync() so the work finishes before the buffers are destroyed. Prior to the commit in the Fixes tag below, there was only a single global IRQ work, so this issue didn't exist.
CVE-2023-53585 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: reject unhashed sockets in bpf_sk_assign The semantics for bpf_sk_assign are as follows: sk = some_lookup_func() bpf_sk_assign(skb, sk) bpf_sk_release(sk) That is, the sk is not consumed by bpf_sk_assign. The function therefore needs to make sure that sk lives long enough to be consumed from __inet_lookup_skb. The path through the stack for a TCPv4 packet is roughly: netif_receive_skb_core: takes RCU read lock __netif_receive_skb_core: sch_handle_ingress: tcf_classify: bpf_sk_assign() deliver_ptype_list_skb: deliver_skb: ip_packet_type->func == ip_rcv: ip_rcv_core: ip_rcv_finish_core: dst_input: ip_local_deliver: ip_local_deliver_finish: ip_protocol_deliver_rcu: tcp_v4_rcv: __inet_lookup_skb: skb_steal_sock The existing helper takes advantage of the fact that everything happens in the same RCU critical section: for sockets with SOCK_RCU_FREE set bpf_sk_assign never takes a reference. skb_steal_sock then checks SOCK_RCU_FREE again and does sock_put if necessary. This approach assumes that SOCK_RCU_FREE is never set on a sk between bpf_sk_assign and skb_steal_sock, but this invariant is violated by unhashed UDP sockets. A new UDP socket is created in TCP_CLOSE state but without SOCK_RCU_FREE set. That flag is only added in udp_lib_get_port() which happens when a socket is bound. When bpf_sk_assign was added it wasn't possible to access unhashed UDP sockets from BPF, so this wasn't a problem. This changed in commit 0c48eefae712 ("sock_map: Lift socket state restriction for datagram sockets"), but the helper wasn't adjusted accordingly. The following sequence of events will therefore lead to a refcount leak: 1. Add socket(AF_INET, SOCK_DGRAM) to a sockmap. 2. Pull socket out of sockmap and bpf_sk_assign it. Since SOCK_RCU_FREE is not set we increment the refcount. 3. bind() or connect() the socket, setting SOCK_RCU_FREE. 4. skb_steal_sock will now set refcounted = false due to SOCK_RCU_FREE. 5. tcp_v4_rcv() skips sock_put(). Fix the problem by rejecting unhashed sockets in bpf_sk_assign(). This matches the behaviour of __inet_lookup_skb which is ultimately the goal of bpf_sk_assign().
CVE-2023-53584 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ubifs: ubifs_releasepage: Remove ubifs_assert(0) to valid this process There are two states for ubifs writing pages: 1. Dirty, Private 2. Not Dirty, Not Private The normal process cannot go to ubifs_releasepage() which means there exists pages being private but not dirty. Reproducer[1] shows that it could occur (which maybe related to [2]) with following process: PA PB PC lock(page)[PA] ubifs_write_end attach_page_private // set Private __set_page_dirty_nobuffers // set Dirty unlock(page) write_cache_pages[PA] lock(page) clear_page_dirty_for_io(page) // clear Dirty ubifs_writepage do_truncation[PB] truncate_setsize i_size_write(inode, newsize) // newsize = 0 i_size = i_size_read(inode) // i_size = 0 end_index = i_size >> PAGE_SHIFT if (page->index > end_index) goto out // jump out: unlock(page) // Private, Not Dirty generic_fadvise[PC] lock(page) invalidate_inode_page try_to_release_page ubifs_releasepage ubifs_assert(c, 0) // bad assertion! unlock(page) truncate_pagecache[PB] Then we may get following assertion failed: UBIFS error (ubi0:0 pid 1683): ubifs_assert_failed [ubifs]: UBIFS assert failed: 0, in fs/ubifs/file.c:1513 UBIFS warning (ubi0:0 pid 1683): ubifs_ro_mode [ubifs]: switched to read-only mode, error -22 CPU: 2 PID: 1683 Comm: aa Not tainted 5.16.0-rc5-00184-g0bca5994cacc-dirty #308 Call Trace: dump_stack+0x13/0x1b ubifs_ro_mode+0x54/0x60 [ubifs] ubifs_assert_failed+0x4b/0x80 [ubifs] ubifs_releasepage+0x67/0x1d0 [ubifs] try_to_release_page+0x57/0xe0 invalidate_inode_page+0xfb/0x130 __invalidate_mapping_pages+0xb9/0x280 invalidate_mapping_pagevec+0x12/0x20 generic_fadvise+0x303/0x3c0 ksys_fadvise64_64+0x4c/0xb0 [1] https://bugzilla.kernel.org/show_bug.cgi?id=215373 [2] https://linux-mtd.infradead.narkive.com/NQoBeT1u/patch-rfc-ubifs-fix-assert-failed-in-ubifs-set-page-dirty
CVE-2023-53582 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: ensure CLM version is null-terminated to prevent stack-out-of-bounds Fix a stack-out-of-bounds read in brcmfmac that occurs when 'buf' that is not null-terminated is passed as an argument of strreplace() in brcmf_c_preinit_dcmds(). This buffer is filled with a CLM version string by memcpy() in brcmf_fil_iovar_data_get(). Ensure buf is null-terminated. Found by a modified version of syzkaller. [ 33.004414][ T1896] brcmfmac: brcmf_c_process_clm_blob: no clm_blob available (err=-2), device may have limited channels available [ 33.013486][ T1896] brcmfmac: brcmf_c_preinit_dcmds: Firmware: BCM43236/3 wl0: Nov 30 2011 17:33:42 version 5.90.188.22 [ 33.021554][ T1896] ================================================================== [ 33.022379][ T1896] BUG: KASAN: stack-out-of-bounds in strreplace+0xf2/0x110 [ 33.023122][ T1896] Read of size 1 at addr ffffc90001d6efc8 by task kworker/0:2/1896 [ 33.023852][ T1896] [ 33.024096][ T1896] CPU: 0 PID: 1896 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132 [ 33.024927][ T1896] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 [ 33.026065][ T1896] Workqueue: usb_hub_wq hub_event [ 33.026581][ T1896] Call Trace: [ 33.026896][ T1896] dump_stack_lvl+0x57/0x7d [ 33.027372][ T1896] print_address_description.constprop.0.cold+0xf/0x334 [ 33.028037][ T1896] ? strreplace+0xf2/0x110 [ 33.028403][ T1896] ? strreplace+0xf2/0x110 [ 33.028807][ T1896] kasan_report.cold+0x83/0xdf [ 33.029283][ T1896] ? strreplace+0xf2/0x110 [ 33.029666][ T1896] strreplace+0xf2/0x110 [ 33.029966][ T1896] brcmf_c_preinit_dcmds+0xab1/0xc40 [ 33.030351][ T1896] ? brcmf_c_set_joinpref_default+0x100/0x100 [ 33.030787][ T1896] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 33.031223][ T1896] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 33.031661][ T1896] ? lock_acquire+0x19d/0x4e0 [ 33.032091][ T1896] ? find_held_lock+0x2d/0x110 [ 33.032605][ T1896] ? brcmf_usb_deq+0x1a7/0x260 [ 33.033087][ T1896] ? brcmf_usb_rx_fill_all+0x5a/0xf0 [ 33.033582][ T1896] brcmf_attach+0x246/0xd40 [ 33.034022][ T1896] ? wiphy_new_nm+0x1476/0x1d50 [ 33.034383][ T1896] ? kmemdup+0x30/0x40 [ 33.034722][ T1896] brcmf_usb_probe+0x12de/0x1690 [ 33.035223][ T1896] ? brcmf_usbdev_qinit.constprop.0+0x470/0x470 [ 33.035833][ T1896] usb_probe_interface+0x25f/0x710 [ 33.036315][ T1896] really_probe+0x1be/0xa90 [ 33.036656][ T1896] __driver_probe_device+0x2ab/0x460 [ 33.037026][ T1896] ? usb_match_id.part.0+0x88/0xc0 [ 33.037383][ T1896] driver_probe_device+0x49/0x120 [ 33.037790][ T1896] __device_attach_driver+0x18a/0x250 [ 33.038300][ T1896] ? driver_allows_async_probing+0x120/0x120 [ 33.038986][ T1896] bus_for_each_drv+0x123/0x1a0 [ 33.039906][ T1896] ? bus_rescan_devices+0x20/0x20 [ 33.041412][ T1896] ? lockdep_hardirqs_on_prepare+0x273/0x3e0 [ 33.041861][ T1896] ? trace_hardirqs_on+0x1c/0x120 [ 33.042330][ T1896] __device_attach+0x207/0x330 [ 33.042664][ T1896] ? device_bind_driver+0xb0/0xb0 [ 33.043026][ T1896] ? kobject_uevent_env+0x230/0x12c0 [ 33.043515][ T1896] bus_probe_device+0x1a2/0x260 [ 33.043914][ T1896] device_add+0xa61/0x1ce0 [ 33.044227][ T1896] ? __mutex_unlock_slowpath+0xe7/0x660 [ 33.044891][ T1896] ? __fw_devlink_link_to_suppliers+0x550/0x550 [ 33.045531][ T1896] usb_set_configuration+0x984/0x1770 [ 33.046051][ T1896] ? kernfs_create_link+0x175/0x230 [ 33.046548][ T1896] usb_generic_driver_probe+0x69/0x90 [ 33.046931][ T1896] usb_probe_device+0x9c/0x220 [ 33.047434][ T1896] really_probe+0x1be/0xa90 [ 33.047760][ T1896] __driver_probe_device+0x2ab/0x460 [ 33.048134][ T1896] driver_probe_device+0x49/0x120 [ 33.048516][ T1896] __device_attach_driver+0x18a/0x250 [ 33.048910][ T1896] ? driver_allows_async_probing+0x120/0x120 ---truncated---
CVE-2023-53581 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Check for NOT_READY flag state after locking Currently the check for NOT_READY flag is performed before obtaining the necessary lock. This opens a possibility for race condition when the flow is concurrently removed from unready_flows list by the workqueue task, which causes a double-removal from the list and a crash[0]. Fix the issue by moving the flag check inside the section protected by uplink_priv->unready_flows_lock mutex. [0]: [44376.389654] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] SMP [44376.391665] CPU: 7 PID: 59123 Comm: tc Not tainted 6.4.0-rc4+ #1 [44376.392984] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [44376.395342] RIP: 0010:mlx5e_tc_del_fdb_flow+0xb3/0x340 [mlx5_core] [44376.396857] Code: 00 48 8b b8 68 ce 02 00 e8 8a 4d 02 00 4c 8d a8 a8 01 00 00 4c 89 ef e8 8b 79 88 e1 48 8b 83 98 06 00 00 48 8b 93 90 06 00 00 <48> 89 42 08 48 89 10 48 b8 00 01 00 00 00 00 ad de 48 89 83 90 06 [44376.399167] RSP: 0018:ffff88812cc97570 EFLAGS: 00010246 [44376.399680] RAX: dead000000000122 RBX: ffff8881088e3800 RCX: ffff8881881bac00 [44376.400337] RDX: dead000000000100 RSI: ffff88812cc97500 RDI: ffff8881242f71b0 [44376.401001] RBP: ffff88811cbb0940 R08: 0000000000000400 R09: 0000000000000001 [44376.401663] R10: 0000000000000001 R11: 0000000000000000 R12: ffff88812c944000 [44376.402342] R13: ffff8881242f71a8 R14: ffff8881222b4000 R15: 0000000000000000 [44376.402999] FS: 00007f0451104800(0000) GS:ffff88852cb80000(0000) knlGS:0000000000000000 [44376.403787] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [44376.404343] CR2: 0000000000489108 CR3: 0000000123a79003 CR4: 0000000000370ea0 [44376.405004] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [44376.405665] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [44376.406339] Call Trace: [44376.406651] <TASK> [44376.406939] ? die_addr+0x33/0x90 [44376.407311] ? exc_general_protection+0x192/0x390 [44376.407795] ? asm_exc_general_protection+0x22/0x30 [44376.408292] ? mlx5e_tc_del_fdb_flow+0xb3/0x340 [mlx5_core] [44376.408876] __mlx5e_tc_del_fdb_peer_flow+0xbc/0xe0 [mlx5_core] [44376.409482] mlx5e_tc_del_flow+0x42/0x210 [mlx5_core] [44376.410055] mlx5e_flow_put+0x25/0x50 [mlx5_core] [44376.410529] mlx5e_delete_flower+0x24b/0x350 [mlx5_core] [44376.411043] tc_setup_cb_reoffload+0x22/0x80 [44376.411462] fl_reoffload+0x261/0x2f0 [cls_flower] [44376.411907] ? mlx5e_rep_indr_setup_ft_cb+0x160/0x160 [mlx5_core] [44376.412481] ? mlx5e_rep_indr_setup_ft_cb+0x160/0x160 [mlx5_core] [44376.413044] tcf_block_playback_offloads+0x76/0x170 [44376.413497] tcf_block_unbind+0x7b/0xd0 [44376.413881] tcf_block_setup+0x17d/0x1c0 [44376.414269] tcf_block_offload_cmd.isra.0+0xf1/0x130 [44376.414725] tcf_block_offload_unbind+0x43/0x70 [44376.415153] __tcf_block_put+0x82/0x150 [44376.415532] ingress_destroy+0x22/0x30 [sch_ingress] [44376.415986] qdisc_destroy+0x3b/0xd0 [44376.416343] qdisc_graft+0x4d0/0x620 [44376.416706] tc_get_qdisc+0x1c9/0x3b0 [44376.417074] rtnetlink_rcv_msg+0x29c/0x390 [44376.419978] ? rep_movs_alternative+0x3a/0xa0 [44376.420399] ? rtnl_calcit.isra.0+0x120/0x120 [44376.420813] netlink_rcv_skb+0x54/0x100 [44376.421192] netlink_unicast+0x1f6/0x2c0 [44376.421573] netlink_sendmsg+0x232/0x4a0 [44376.421980] sock_sendmsg+0x38/0x60 [44376.422328] ____sys_sendmsg+0x1d0/0x1e0 [44376.422709] ? copy_msghdr_from_user+0x6d/0xa0 [44376.423127] ___sys_sendmsg+0x80/0xc0 [44376.423495] ? ___sys_recvmsg+0x8b/0xc0 [44376.423869] __sys_sendmsg+0x51/0x90 [44376.424226] do_syscall_64+0x3d/0x90 [44376.424587] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [44376.425046] RIP: 0033:0x7f045134f887 [44376.425403] Code: 0a 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b9 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 2e 00 ---truncated---
CVE-2023-53578 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: qrtr: Fix an uninit variable access bug in qrtr_tx_resume() Syzbot reported a bug as following: ===================================================== BUG: KMSAN: uninit-value in qrtr_tx_resume+0x185/0x1f0 net/qrtr/af_qrtr.c:230 qrtr_tx_resume+0x185/0x1f0 net/qrtr/af_qrtr.c:230 qrtr_endpoint_post+0xf85/0x11b0 net/qrtr/af_qrtr.c:519 qrtr_tun_write_iter+0x270/0x400 net/qrtr/tun.c:108 call_write_iter include/linux/fs.h:2189 [inline] aio_write+0x63a/0x950 fs/aio.c:1600 io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019 __do_sys_io_submit fs/aio.c:2078 [inline] __se_sys_io_submit+0x293/0x770 fs/aio.c:2048 __x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Uninit was created at: slab_post_alloc_hook mm/slab.h:766 [inline] slab_alloc_node mm/slub.c:3452 [inline] __kmem_cache_alloc_node+0x71f/0xce0 mm/slub.c:3491 __do_kmalloc_node mm/slab_common.c:967 [inline] __kmalloc_node_track_caller+0x114/0x3b0 mm/slab_common.c:988 kmalloc_reserve net/core/skbuff.c:492 [inline] __alloc_skb+0x3af/0x8f0 net/core/skbuff.c:565 __netdev_alloc_skb+0x120/0x7d0 net/core/skbuff.c:630 qrtr_endpoint_post+0xbd/0x11b0 net/qrtr/af_qrtr.c:446 qrtr_tun_write_iter+0x270/0x400 net/qrtr/tun.c:108 call_write_iter include/linux/fs.h:2189 [inline] aio_write+0x63a/0x950 fs/aio.c:1600 io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019 __do_sys_io_submit fs/aio.c:2078 [inline] __se_sys_io_submit+0x293/0x770 fs/aio.c:2048 __x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd It is because that skb->len requires at least sizeof(struct qrtr_ctrl_pkt) in qrtr_tx_resume(). And skb->len equals to size in qrtr_endpoint_post(). But size is less than sizeof(struct qrtr_ctrl_pkt) when qrtr_cb->type equals to QRTR_TYPE_RESUME_TX in qrtr_endpoint_post() under the syzbot scenario. This triggers the uninit variable access bug. Add size check when qrtr_cb->type equals to QRTR_TYPE_RESUME_TX in qrtr_endpoint_post() to fix the bug.
CVE-2023-53574 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw88: delete timer and free skb queue when unloading Fix possible crash and memory leak on driver unload by deleting TX purge timer and freeing C2H queue in 'rtw_core_deinit()', shrink critical section in the latter by freeing COEX queue out of TX report lock scope.
CVE-2023-53570 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: nl80211: fix integer overflow in nl80211_parse_mbssid_elems() nl80211_parse_mbssid_elems() uses a u8 variable num_elems to count the number of MBSSID elements in the nested netlink attribute attrs, which can lead to an integer overflow if a user of the nl80211 interface specifies 256 or more elements in the corresponding attribute in userspace. The integer overflow can lead to a heap buffer overflow as num_elems determines the size of the trailing array in elems, and this array is thereafter written to for each element in attrs. Note that this vulnerability only affects devices with the wiphy->mbssid_max_interfaces member set for the wireless physical device struct in the device driver, and can only be triggered by a process with CAP_NET_ADMIN capabilities. Fix this by checking for a maximum of 255 elements in attrs.