| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Preserve param->string when parsing mount options
In bpf_parse_param(), keep the value of param->string intact so it can
be freed later. Otherwise, the kmalloc area pointed to by param->string
will be leaked as shown below:
unreferenced object 0xffff888118c46d20 (size 8):
comm "new_name", pid 12109, jiffies 4295580214
hex dump (first 8 bytes):
61 6e 79 00 38 c9 5c 7e any.8.\~
backtrace (crc e1b7f876):
[<00000000c6848ac7>] kmemleak_alloc+0x4b/0x80
[<00000000de9f7d00>] __kmalloc_node_track_caller_noprof+0x36e/0x4a0
[<000000003e29b886>] memdup_user+0x32/0xa0
[<0000000007248326>] strndup_user+0x46/0x60
[<0000000035b3dd29>] __x64_sys_fsconfig+0x368/0x3d0
[<0000000018657927>] x64_sys_call+0xff/0x9f0
[<00000000c0cabc95>] do_syscall_64+0x3b/0xc0
[<000000002f331597>] entry_SYSCALL_64_after_hwframe+0x4b/0x53 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Check the remaining info_cnt before repeating btf fields
When trying to repeat the btf fields for array of nested struct, it
doesn't check the remaining info_cnt. The following splat will be
reported when the value of ret * nelems is greater than BTF_FIELDS_MAX:
------------[ cut here ]------------
UBSAN: array-index-out-of-bounds in ../kernel/bpf/btf.c:3951:49
index 11 is out of range for type 'btf_field_info [11]'
CPU: 6 UID: 0 PID: 411 Comm: test_progs ...... 6.11.0-rc4+ #1
Tainted: [O]=OOT_MODULE
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ...
Call Trace:
<TASK>
dump_stack_lvl+0x57/0x70
dump_stack+0x10/0x20
ubsan_epilogue+0x9/0x40
__ubsan_handle_out_of_bounds+0x6f/0x80
? kallsyms_lookup_name+0x48/0xb0
btf_parse_fields+0x992/0xce0
map_create+0x591/0x770
__sys_bpf+0x229/0x2410
__x64_sys_bpf+0x1f/0x30
x64_sys_call+0x199/0x9f0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7fea56f2cc5d
......
</TASK>
---[ end trace ]---
Fix it by checking the remaining info_cnt in btf_repeat_fields() before
repeating the btf fields. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: Fix out of bound check
Driver exports pacing stats only on GenP5 and P7 adapters. But while
parsing the pacing stats, driver has a check for "rdev->dbr_pacing". This
caused a trace when KASAN is enabled.
BUG: KASAN: slab-out-of-bounds in bnxt_re_get_hw_stats+0x2b6a/0x2e00 [bnxt_re]
Write of size 8 at addr ffff8885942a6340 by task modprobe/4809 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: fix unbalanced rpm put() with fence_fini()
Currently we can call fence_fini() twice if something goes wrong when
sending the GuC CT for the tlb request, since we signal the fence and
return an error, leading to the caller also calling fini() on the error
path in the case of stack version of the flow, which leads to an extra
rpm put() which might later cause device to enter suspend when it
shouldn't. It looks like we can just drop the fini() call since the
fence signaller side will already call this for us.
There are known mysterious splats with device going to sleep even with
an rpm ref, and this could be one candidate.
v2 (Matt B):
- Prefer warning if we detect double fini()
(cherry picked from commit cfcbc0520d5055825f0647ab922b655688605183) |
| In the Linux kernel, the following vulnerability has been resolved:
sched/core: Disable page allocation in task_tick_mm_cid()
With KASAN and PREEMPT_RT enabled, calling task_work_add() in
task_tick_mm_cid() may cause the following splat.
[ 63.696416] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
[ 63.696416] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 610, name: modprobe
[ 63.696416] preempt_count: 10001, expected: 0
[ 63.696416] RCU nest depth: 1, expected: 1
This problem is caused by the following call trace.
sched_tick() [ acquire rq->__lock ]
-> task_tick_mm_cid()
-> task_work_add()
-> __kasan_record_aux_stack()
-> kasan_save_stack()
-> stack_depot_save_flags()
-> alloc_pages_mpol_noprof()
-> __alloc_pages_noprof()
-> get_page_from_freelist()
-> rmqueue()
-> rmqueue_pcplist()
-> __rmqueue_pcplist()
-> rmqueue_bulk()
-> rt_spin_lock()
The rq lock is a raw_spinlock_t. We can't sleep while holding
it. IOW, we can't call alloc_pages() in stack_depot_save_flags().
The task_tick_mm_cid() function with its task_work_add() call was
introduced by commit 223baf9d17f2 ("sched: Fix performance regression
introduced by mm_cid") in v6.4 kernel.
Fortunately, there is a kasan_record_aux_stack_noalloc() variant that
calls stack_depot_save_flags() while not allowing it to allocate
new pages. To allow task_tick_mm_cid() to use task_work without
page allocation, a new TWAF_NO_ALLOC flag is added to enable calling
kasan_record_aux_stack_noalloc() instead of kasan_record_aux_stack()
if set. The task_tick_mm_cid() function is modified to add this new flag.
The possible downside is the missing stack trace in a KASAN report due
to new page allocation required when task_work_add_noallloc() is called
which should be rare. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Fix shift-out-of-bounds bug
Fix a shift-out-of-bounds bug reported by UBSAN when running
VM with MTE enabled host kernel.
UBSAN: shift-out-of-bounds in arch/arm64/kvm/sys_regs.c:1988:14
shift exponent 33 is too large for 32-bit type 'int'
CPU: 26 UID: 0 PID: 7629 Comm: qemu-kvm Not tainted 6.12.0-rc2 #34
Hardware name: IEI NF5280R7/Mitchell MB, BIOS 00.00. 2024-10-12 09:28:54 10/14/2024
Call trace:
dump_backtrace+0xa0/0x128
show_stack+0x20/0x38
dump_stack_lvl+0x74/0x90
dump_stack+0x18/0x28
__ubsan_handle_shift_out_of_bounds+0xf8/0x1e0
reset_clidr+0x10c/0x1c8
kvm_reset_sys_regs+0x50/0x1c8
kvm_reset_vcpu+0xec/0x2b0
__kvm_vcpu_set_target+0x84/0x158
kvm_vcpu_set_target+0x138/0x168
kvm_arch_vcpu_ioctl_vcpu_init+0x40/0x2b0
kvm_arch_vcpu_ioctl+0x28c/0x4b8
kvm_vcpu_ioctl+0x4bc/0x7a8
__arm64_sys_ioctl+0xb4/0x100
invoke_syscall+0x70/0x100
el0_svc_common.constprop.0+0x48/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x3c/0x158
el0t_64_sync_handler+0x120/0x130
el0t_64_sync+0x194/0x198 |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-pci: fix race condition between reset and nvme_dev_disable()
nvme_dev_disable() modifies the dev->online_queues field, therefore
nvme_pci_update_nr_queues() should avoid racing against it, otherwise
we could end up passing invalid values to blk_mq_update_nr_hw_queues().
WARNING: CPU: 39 PID: 61303 at drivers/pci/msi/api.c:347
pci_irq_get_affinity+0x187/0x210
Workqueue: nvme-reset-wq nvme_reset_work [nvme]
RIP: 0010:pci_irq_get_affinity+0x187/0x210
Call Trace:
<TASK>
? blk_mq_pci_map_queues+0x87/0x3c0
? pci_irq_get_affinity+0x187/0x210
blk_mq_pci_map_queues+0x87/0x3c0
nvme_pci_map_queues+0x189/0x460 [nvme]
blk_mq_update_nr_hw_queues+0x2a/0x40
nvme_reset_work+0x1be/0x2a0 [nvme]
Fix the bug by locking the shutdown_lock mutex before using
dev->online_queues. Give up if nvme_dev_disable() is running or if
it has been executed already. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing/probes: Fix MAX_TRACE_ARGS limit handling
When creating a trace_probe we would set nr_args prior to truncating the
arguments to MAX_TRACE_ARGS. However, we would only initialize arguments
up to the limit.
This caused invalid memory access when attempting to set up probes with
more than 128 fetchargs.
BUG: kernel NULL pointer dereference, address: 0000000000000020
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 0 UID: 0 PID: 1769 Comm: cat Not tainted 6.11.0-rc7+ #8
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-1.fc39 04/01/2014
RIP: 0010:__set_print_fmt+0x134/0x330
Resolve the issue by applying the MAX_TRACE_ARGS limit earlier. Return
an error when there are too many arguments instead of silently
truncating. |
| In the Linux kernel, the following vulnerability has been resolved:
net: pse-pd: Fix out of bound for loop
Adjust the loop limit to prevent out-of-bounds access when iterating over
PI structures. The loop should not reach the index pcdev->nr_lines since
we allocate exactly pcdev->nr_lines number of PI structures. This fix
ensures proper bounds are maintained during iterations. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Add the missing BPF_LINK_TYPE invocation for sockmap
There is an out-of-bounds read in bpf_link_show_fdinfo() for the sockmap
link fd. Fix it by adding the missing BPF_LINK_TYPE invocation for
sockmap link
Also add comments for bpf_link_type to prevent missing updates in the
future. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: Hold rescan lock while adding devices during host probe
Since adding the PCI power control code, we may end up with a race between
the pwrctl platform device rescanning the bus and host controller probe
functions. The latter need to take the rescan lock when adding devices or
we may end up in an undefined state having two incompletely added devices
and hit the following crash when trying to remove the device over sysfs:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
Internal error: Oops: 0000000096000004 [#1] SMP
Call trace:
__pi_strlen+0x14/0x150
kernfs_find_ns+0x80/0x13c
kernfs_remove_by_name_ns+0x54/0xf0
sysfs_remove_bin_file+0x24/0x34
pci_remove_resource_files+0x3c/0x84
pci_remove_sysfs_dev_files+0x28/0x38
pci_stop_bus_device+0x8c/0xd8
pci_stop_bus_device+0x40/0xd8
pci_stop_and_remove_bus_device_locked+0x28/0x48
remove_store+0x70/0xb0
dev_attr_store+0x20/0x38
sysfs_kf_write+0x58/0x78
kernfs_fop_write_iter+0xe8/0x184
vfs_write+0x2dc/0x308
ksys_write+0x7c/0xec |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix warning when destroy 'cifs_io_request_pool'
There's a issue as follows:
WARNING: CPU: 1 PID: 27826 at mm/slub.c:4698 free_large_kmalloc+0xac/0xe0
RIP: 0010:free_large_kmalloc+0xac/0xe0
Call Trace:
<TASK>
? __warn+0xea/0x330
mempool_destroy+0x13f/0x1d0
init_cifs+0xa50/0xff0 [cifs]
do_one_initcall+0xdc/0x550
do_init_module+0x22d/0x6b0
load_module+0x4e96/0x5ff0
init_module_from_file+0xcd/0x130
idempotent_init_module+0x330/0x620
__x64_sys_finit_module+0xb3/0x110
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Obviously, 'cifs_io_request_pool' is not created by mempool_create().
So just use mempool_exit() to revert 'cifs_io_request_pool'. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: reject ro->rw reconfiguration if there are hard ro requirements
[BUG]
Syzbot reports the following crash:
BTRFS info (device loop0 state MCS): disabling free space tree
BTRFS info (device loop0 state MCS): clearing compat-ro feature flag for FREE_SPACE_TREE (0x1)
BTRFS info (device loop0 state MCS): clearing compat-ro feature flag for FREE_SPACE_TREE_VALID (0x2)
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000003: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f]
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:backup_super_roots fs/btrfs/disk-io.c:1691 [inline]
RIP: 0010:write_all_supers+0x97a/0x40f0 fs/btrfs/disk-io.c:4041
Call Trace:
<TASK>
btrfs_commit_transaction+0x1eae/0x3740 fs/btrfs/transaction.c:2530
btrfs_delete_free_space_tree+0x383/0x730 fs/btrfs/free-space-tree.c:1312
btrfs_start_pre_rw_mount+0xf28/0x1300 fs/btrfs/disk-io.c:3012
btrfs_remount_rw fs/btrfs/super.c:1309 [inline]
btrfs_reconfigure+0xae6/0x2d40 fs/btrfs/super.c:1534
btrfs_reconfigure_for_mount fs/btrfs/super.c:2020 [inline]
btrfs_get_tree_subvol fs/btrfs/super.c:2079 [inline]
btrfs_get_tree+0x918/0x1920 fs/btrfs/super.c:2115
vfs_get_tree+0x90/0x2b0 fs/super.c:1800
do_new_mount+0x2be/0xb40 fs/namespace.c:3472
do_mount fs/namespace.c:3812 [inline]
__do_sys_mount fs/namespace.c:4020 [inline]
__se_sys_mount+0x2d6/0x3c0 fs/namespace.c:3997
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
[CAUSE]
To support mounting different subvolume with different RO/RW flags for
the new mount APIs, btrfs introduced two workaround to support this feature:
- Skip mount option/feature checks if we are mounting a different
subvolume
- Reconfigure the fs to RW if the initial mount is RO
Combining these two, we can have the following sequence:
- Mount the fs ro,rescue=all,clear_cache,space_cache=v1
rescue=all will mark the fs as hard read-only, so no v2 cache clearing
will happen.
- Mount a subvolume rw of the same fs.
We go into btrfs_get_tree_subvol(), but fc_mount() returns EBUSY
because our new fc is RW, different from the original fs.
Now we enter btrfs_reconfigure_for_mount(), which switches the RO flag
first so that we can grab the existing fs_info.
Then we reconfigure the fs to RW.
- During reconfiguration, option/features check is skipped
This means we will restart the v2 cache clearing, and convert back to
v1 cache.
This will trigger fs writes, and since the original fs has "rescue=all"
option, it skips the csum tree read.
And eventually causing NULL pointer dereference in super block
writeback.
[FIX]
For reconfiguration caused by different subvolume RO/RW flags, ensure we
always run btrfs_check_options() to ensure we have proper hard RO
requirements met.
In fact the function btrfs_check_options() doesn't really do many
complex checks, but hard RO requirement and some feature dependency
checks, thus there is no special reason not to do the check for mount
reconfiguration. |
| In the Linux kernel, the following vulnerability has been resolved:
firewire: core: fix invalid port index for parent device
In a commit 24b7f8e5cd65 ("firewire: core: use helper functions for self
ID sequence"), the enumeration over self ID sequence was refactored with
some helper functions with KUnit tests. These helper functions are
guaranteed to work expectedly by the KUnit tests, however their application
includes a mistake to assign invalid value to the index of port connected
to parent device.
This bug affects the case that any extra node devices which has three or
more ports are connected to 1394 OHCI controller. In the case, the path
to update the tree cache could hits WARN_ON(), and gets general protection
fault due to the access to invalid address computed by the invalid value.
This commit fixes the bug to assign correct port index. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/lam: Disable ADDRESS_MASKING in most cases
Linear Address Masking (LAM) has a weakness related to transient
execution as described in the SLAM paper[1]. Unless Linear Address
Space Separation (LASS) is enabled this weakness may be exploitable.
Until kernel adds support for LASS[2], only allow LAM for COMPILE_TEST,
or when speculation mitigations have been disabled at compile time,
otherwise keep LAM disabled.
There are no processors in market that support LAM yet, so currently
nobody is affected by this issue.
[1] SLAM: https://download.vusec.net/papers/slam_sp24.pdf
[2] LASS: https://lore.kernel.org/lkml/20230609183632.48706-1-alexander.shishkin@linux.intel.com/
[ dhansen: update SPECULATION_MITIGATIONS -> CPU_MITIGATIONS ] |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Enable IRQ if do_ale() triggered in irq-enabled context
Unaligned access exception can be triggered in irq-enabled context such
as user mode, in this case do_ale() may call get_user() which may cause
sleep. Then we will get:
BUG: sleeping function called from invalid context at arch/loongarch/kernel/access-helper.h:7
in_atomic(): 0, irqs_disabled(): 1, non_block: 0, pid: 129, name: modprobe
preempt_count: 0, expected: 0
RCU nest depth: 0, expected: 0
CPU: 0 UID: 0 PID: 129 Comm: modprobe Tainted: G W 6.12.0-rc1+ #1723
Tainted: [W]=WARN
Stack : 9000000105e0bd48 0000000000000000 9000000003803944 9000000105e08000
9000000105e0bc70 9000000105e0bc78 0000000000000000 0000000000000000
9000000105e0bc78 0000000000000001 9000000185e0ba07 9000000105e0b890
ffffffffffffffff 9000000105e0bc78 73924b81763be05b 9000000100194500
000000000000020c 000000000000000a 0000000000000000 0000000000000003
00000000000023f0 00000000000e1401 00000000072f8000 0000007ffbb0e260
0000000000000000 0000000000000000 9000000005437650 90000000055d5000
0000000000000000 0000000000000003 0000007ffbb0e1f0 0000000000000000
0000005567b00490 0000000000000000 9000000003803964 0000007ffbb0dfec
00000000000000b0 0000000000000007 0000000000000003 0000000000071c1d
...
Call Trace:
[<9000000003803964>] show_stack+0x64/0x1a0
[<9000000004c57464>] dump_stack_lvl+0x74/0xb0
[<9000000003861ab4>] __might_resched+0x154/0x1a0
[<900000000380c96c>] emulate_load_store_insn+0x6c/0xf60
[<9000000004c58118>] do_ale+0x78/0x180
[<9000000003801bc8>] handle_ale+0x128/0x1e0
So enable IRQ if unaligned access exception is triggered in irq-enabled
context to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: fix null ptr dereference in raid10_size()
In raid10_run() if raid10_set_queue_limits() succeed, the return value
is set to zero, and if following procedures failed raid10_run() will
return zero while mddev->private is still NULL, causing null ptr
dereference in raid10_size().
Fix the problem by only overwrite the return value if
raid10_set_queue_limits() failed. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86/intel/pmc: Fix pmc_core_iounmap to call iounmap for valid addresses
Commit 50c6dbdfd16e ("x86/ioremap: Improve iounmap() address range checks")
introduces a WARN when adrress ranges of iounmap are invalid. On Thinkpad
P1 Gen 7 (Meteor Lake-P) this caused the following warning to appear:
WARNING: CPU: 7 PID: 713 at arch/x86/mm/ioremap.c:461 iounmap+0x58/0x1f0
Modules linked in: rfkill(+) snd_timer(+) fjes(+) snd soundcore intel_pmc_core(+)
int3403_thermal(+) int340x_thermal_zone intel_vsec pmt_telemetry acpi_pad pmt_class
acpi_tad int3400_thermal acpi_thermal_rel joydev loop nfnetlink zram xe drm_suballoc_helper
nouveau i915 mxm_wmi drm_ttm_helper gpu_sched drm_gpuvm drm_exec drm_buddy i2c_algo_bit
crct10dif_pclmul crc32_pclmul ttm crc32c_intel polyval_clmulni rtsx_pci_sdmmc ucsi_acpi
polyval_generic mmc_core hid_multitouch drm_display_helper ghash_clmulni_intel typec_ucsi
nvme sha512_ssse3 video sha256_ssse3 nvme_core intel_vpu sha1_ssse3 rtsx_pci cec typec
nvme_auth i2c_hid_acpi i2c_hid wmi pinctrl_meteorlake serio_raw ip6_tables ip_tables fuse
CPU: 7 UID: 0 PID: 713 Comm: (udev-worker) Not tainted 6.12.0-rc2iounmap+ #42
Hardware name: LENOVO 21KWCTO1WW/21KWCTO1WW, BIOS N48ET19W (1.06 ) 07/18/2024
RIP: 0010:iounmap+0x58/0x1f0
Code: 85 6a 01 00 00 48 8b 05 e6 e2 28 04 48 39 c5 72 19 eb 26 cc cc cc 48 ba 00 00 00 00 00 00 32 00 48 8d 44 02 ff 48 39 c5 72 23 <0f> 0b 48 83 c4 08 5b 5d 41 5c c3 cc cc cc cc 48 ba 00 00 00 00 00
RSP: 0018:ffff888131eff038 EFLAGS: 00010207
RAX: ffffc90000000000 RBX: 0000000000000000 RCX: ffff888e33b80000
RDX: dffffc0000000000 RSI: ffff888e33bc29c0 RDI: 0000000000000000
RBP: 0000000000000000 R08: ffff8881598a8000 R09: ffff888e2ccedc10
R10: 0000000000000003 R11: ffffffffb3367634 R12: 00000000fe000000
R13: ffff888101d0da28 R14: ffffffffc2e437e0 R15: ffff888110b03b28
FS: 00007f3c1d4b3980(0000) GS:ffff888e33b80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005651cfc93578 CR3: 0000000124e4c002 CR4: 0000000000f70ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff07f0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
? __warn.cold+0xb6/0x176
? iounmap+0x58/0x1f0
? report_bug+0x1f4/0x2b0
? handle_bug+0x58/0x90
? exc_invalid_op+0x17/0x40
? asm_exc_invalid_op+0x1a/0x20
? iounmap+0x58/0x1f0
pmc_core_ssram_get_pmc+0x477/0x6c0 [intel_pmc_core]
? __pfx_pmc_core_ssram_get_pmc+0x10/0x10 [intel_pmc_core]
? __pfx_do_pci_enable_device+0x10/0x10
? pci_wait_for_pending+0x60/0x110
? pci_enable_device_flags+0x1e3/0x2e0
? __pfx_mtl_core_init+0x10/0x10 [intel_pmc_core]
pmc_core_ssram_init+0x7f/0x110 [intel_pmc_core]
mtl_core_init+0xda/0x130 [intel_pmc_core]
? __mutex_init+0xb9/0x130
pmc_core_probe+0x27e/0x10b0 [intel_pmc_core]
? _raw_spin_lock_irqsave+0x96/0xf0
? __pfx_pmc_core_probe+0x10/0x10 [intel_pmc_core]
? __pfx_mutex_unlock+0x10/0x10
? __pfx_mutex_lock+0x10/0x10
? device_pm_check_callbacks+0x82/0x370
? acpi_dev_pm_attach+0x234/0x2b0
platform_probe+0x9f/0x150
really_probe+0x1e0/0x8a0
__driver_probe_device+0x18c/0x370
? __pfx___driver_attach+0x10/0x10
driver_probe_device+0x4a/0x120
__driver_attach+0x190/0x4a0
? __pfx___driver_attach+0x10/0x10
bus_for_each_dev+0x103/0x180
? __pfx_bus_for_each_dev+0x10/0x10
? klist_add_tail+0x136/0x270
bus_add_driver+0x2fc/0x540
driver_register+0x1a5/0x360
? __pfx_pmc_core_driver_init+0x10/0x10 [intel_pmc_core]
do_one_initcall+0xa4/0x380
? __pfx_do_one_initcall+0x10/0x10
? kasan_unpoison+0x44/0x70
do_init_module+0x296/0x800
load_module+0x5090/0x6ce0
? __pfx_load_module+0x10/0x10
? ima_post_read_file+0x193/0x200
? __pfx_ima_post_read_file+0x10/0x10
? rw_verify_area+0x152/0x4c0
? kernel_read_file+0x257/0x750
? __pfx_kernel_read_file+0x10/0x10
? __pfx_filemap_get_read_batch+0x10/0x10
? init_module_from_file+0xd1/0x130
init_module_from_file+0xd1/0x130
? __pfx_init_module_from_file+0x10/0
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: qcom: sc7280: Fix missing Soundwire runtime stream alloc
Commit 15c7fab0e047 ("ASoC: qcom: Move Soundwire runtime stream alloc to
soundcards") moved the allocation of Soundwire stream runtime from the
Qualcomm Soundwire driver to each individual machine sound card driver,
except that it forgot to update SC7280 card.
Just like for other Qualcomm sound cards using Soundwire, the card
driver should allocate and release the runtime. Otherwise sound
playback will result in a NULL pointer dereference or other effect of
uninitialized memory accesses (which was confirmed on SDM845 having
similar issue). |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: qcom: sdm845: add missing soundwire runtime stream alloc
During the migration of Soundwire runtime stream allocation from
the Qualcomm Soundwire controller to SoC's soundcard drivers the sdm845
soundcard was forgotten.
At this point any playback attempt or audio daemon startup, for instance
on sdm845-db845c (Qualcomm RB3 board), will result in stream pointer
NULL dereference:
Unable to handle kernel NULL pointer dereference at virtual
address 0000000000000020
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=0000000101ecf000
[0000000000000020] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
Modules linked in: ...
CPU: 5 UID: 0 PID: 1198 Comm: aplay
Not tainted 6.12.0-rc2-qcomlt-arm64-00059-g9d78f315a362-dirty #18
Hardware name: Thundercomm Dragonboard 845c (DT)
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : sdw_stream_add_slave+0x44/0x380 [soundwire_bus]
lr : sdw_stream_add_slave+0x44/0x380 [soundwire_bus]
sp : ffff80008a2035c0
x29: ffff80008a2035c0 x28: ffff80008a203978 x27: 0000000000000000
x26: 00000000000000c0 x25: 0000000000000000 x24: ffff1676025f4800
x23: ffff167600ff1cb8 x22: ffff167600ff1c98 x21: 0000000000000003
x20: ffff167607316000 x19: ffff167604e64e80 x18: 0000000000000000
x17: 0000000000000000 x16: ffffcec265074160 x15: 0000000000000000
x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000
x8 : 0000000000000000 x7 : 0000000000000000 x6 : ffff167600ff1cec
x5 : ffffcec22cfa2010 x4 : 0000000000000000 x3 : 0000000000000003
x2 : ffff167613f836c0 x1 : 0000000000000000 x0 : ffff16761feb60b8
Call trace:
sdw_stream_add_slave+0x44/0x380 [soundwire_bus]
wsa881x_hw_params+0x68/0x80 [snd_soc_wsa881x]
snd_soc_dai_hw_params+0x3c/0xa4
__soc_pcm_hw_params+0x230/0x660
dpcm_be_dai_hw_params+0x1d0/0x3f8
dpcm_fe_dai_hw_params+0x98/0x268
snd_pcm_hw_params+0x124/0x460
snd_pcm_common_ioctl+0x998/0x16e8
snd_pcm_ioctl+0x34/0x58
__arm64_sys_ioctl+0xac/0xf8
invoke_syscall+0x48/0x104
el0_svc_common.constprop.0+0x40/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x34/0xe0
el0t_64_sync_handler+0x120/0x12c
el0t_64_sync+0x190/0x194
Code: aa0403fb f9418400 9100e000 9400102f (f8420f22)
---[ end trace 0000000000000000 ]---
0000000000006108 <sdw_stream_add_slave>:
6108: d503233f paciasp
610c: a9b97bfd stp x29, x30, [sp, #-112]!
6110: 910003fd mov x29, sp
6114: a90153f3 stp x19, x20, [sp, #16]
6118: a9025bf5 stp x21, x22, [sp, #32]
611c: aa0103f6 mov x22, x1
6120: 2a0303f5 mov w21, w3
6124: a90363f7 stp x23, x24, [sp, #48]
6128: aa0003f8 mov x24, x0
612c: aa0203f7 mov x23, x2
6130: a9046bf9 stp x25, x26, [sp, #64]
6134: aa0403f9 mov x25, x4 <-- x4 copied to x25
6138: a90573fb stp x27, x28, [sp, #80]
613c: aa0403fb mov x27, x4
6140: f9418400 ldr x0, [x0, #776]
6144: 9100e000 add x0, x0, #0x38
6148: 94000000 bl 0 <mutex_lock>
614c: f8420f22 ldr x2, [x25, #32]! <-- offset 0x44
^^^
This is 0x6108 + offset 0x44 from the beginning of sdw_stream_add_slave()
where data abort happens.
wsa881x_hw_params() is called with stream = NULL and passes it further
in register x4 (5th argu
---truncated--- |