| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability in the web-based management interface of Cisco Unified Communications Manager (Unified CM) and Cisco Unified Communications Manager Session Management Edition (Unified CM SME) could allow an authenticated, remote attacker to conduct a cross-site scripting (XSS) attack against a user of the interface.
This vulnerability exists because the web-based management interface does not properly validate user-supplied input. An attacker could exploit this vulnerability by injecting malicious code into specific pages of the interface. A successful exploit could allow the attacker to execute arbitrary script code in the context of the affected interface or access sensitive, browser-based information. To exploit this vulnerability, the attacker must have valid administrative credentials. |
| auth0-PHP is an SDK for Auth0 Authentication and Management APIs. In versions 3.3.0 through 8.16.0, the Bulk User Import endpoint in applications built with the SDK does not validate the file-path wrapper or value. Without proper validation, affected applications may accept arbitrary file paths or URLs. The vulnerability affects any application that either directly uses the Auth0-PHP SDK (versions 3.3.0–8.16.0) or indirectly relies on those versions through the Auth0/symfony, Auth0/laravel-auth0, or Auth0/wordpress SDKs. This issue is fixed in version 8.17.0. |
| OpenPLC_V3 has a vulnerability in the enipThread function that occurs due to the lack of a return value. This leads to a crash when the server loop ends and execution hits an illegal ud2 instruction. This issue can be triggered remotely without authentication by starting the same server multiple times or if the server exits unexpectedly. The vulnerability allows an attacker to cause a Denial of Service (DoS) against the PLC runtime, stopping any PC started remotely without authentication. This results in the PLC process crashing and halting all automation or control logic managed by OpenPLC. |
| Starting from Rust 1.87.0 and before Rust 1.89.0, the tier 3 Cygwin target (`x86_64-pc-cygwin`) didn't correctly handle path separators, causing the standard library's Path API to ignore path components separated by backslashes. Due to this, programs compiled for Cygwin that validate paths could misbehave, potentially allowing path traversal attacks or malicious filesystem operations.
Rust 1.89.0 fixes the issue by handling both Win32 and Unix style paths in the standard library for the Cygwin target.
While we assess the severity of this vulnerability as "medium", please note that the tier 3 Cygwin compilation target is only available when building it from source: no pre-built binaries are distributed by the Rust project, and it cannot be installed through Rustup. Unless you manually compiled the `x86_64-pc-cygwin` target you are not affected by this vulnerability. Users of the tier 1 MinGW target (`x86_64-pc-windows-gnu`) are also explicitly not affected. |
| A potential security vulnerability has been identified in the HP Support Assistant for versions prior to 9.47.41.0. The vulnerability could potentially allow a local attacker to escalate privileges via an arbitrary file write. |
| Cross Site Scripting vulnerability in Neto E-Commerce CMS v.6.313.0 through v.6.3115 allows a remote attacker to escalate privileges via the kw parameter. |
| RISC Zero is a zero-knowledge verifiable general computing platform based on zk-STARKs and the RISC-V microarchitecture. In versions 2.0.2 and below of risc0-zkvm-platform, when the zkVM guest calls sys_read, the host is able to use a crafted response to write to an arbitrary memory location in the guest. This capability can be leveraged to execute arbitrary code within the guest. As sys_read is the mechanism by which input is requested by the guest, all guest programs built with the affected versions are vulnerable. This critically compromises the soundness guarantees of the guest program. Other affected packages include risc0-aggregation versions below 0.9, risc0-zkos-v1compat below 2.1.0, risc0-zkvm versions between 3.0.0-rc.1 and 3.0.1. This issue has been fixed in the following versions: risc0-zkvm-platform 2.1.0, risc0-zkos-v1compat 2.1.0, risc0-aggregation 0.9, and risc0-zkvm 2.3.2 and 3.0.3. |
| A stored cross-site scripting (XSS) in Kissflow Work Platform Kissflow Application Versions 7337 Account v2.0 to v4.2vallows attackers to execute arbitrary web scripts or HTML via injecting a crafted payload. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: Properly order ib_device_unalloc() to avoid UAF
ib_dealloc_device() should be called only after device cleanup. Fix the
dealloc sequence. |
| An authenticated cross-site scripting (XSS) vulnerability in the Administrative interface of Radware AlteonOS Web UI Management v33.0.4.50 allows attackers to execute arbitrary web scripts or HTML via injecting a crafted payload into the Description parameter. |
| A reflected cross-site scripted (XSS) vulnerability in Codazon Magento Themes v1.1.0.0 to v2.4.7 allows attackers to execute arbitrary Javascript in the context of a user's browser via a crafted payload injected into the cat parameter. |
| Stored Cross-Site Scripting (XSS) vulnerability in Issabel v5.0.0, consisting of a stored XSS due to a lack of proper validation of user input, through the 'numero_conferencia' parameter in '/index.php?menu=conferencia'. |
| Improper handling of symbolic links in the TeamViewer Full Client and Host for Windows — in versions prior to 15.70 of TeamViewer Remote and Tensor — allows an attacker with local, unprivileged access to a device lacking adequate malware protection to escalate privileges by spoofing the update file path. This may result in unauthorized access to sensitive information. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix deinitialization of firmware resources
Currently, in ath11k_ahb_fw_resources_init(), iommu domain
mapping is done only for the chipsets having fixed firmware
memory. Also, for such chipsets, mapping is done only if it
does not have TrustZone support.
During deinitialization, only if TrustZone support is not there,
iommu is unmapped back. However, for non fixed firmware memory
chipsets, TrustZone support is not there and this makes the
condition check to true and it tries to unmap the memory which
was not mapped during initialization.
This leads to the following trace -
[ 83.198790] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
[ 83.259537] Modules linked in: ath11k_ahb ath11k qmi_helpers
.. snip ..
[ 83.280286] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 83.287228] pc : __iommu_unmap+0x30/0x140
[ 83.293907] lr : iommu_unmap+0x5c/0xa4
[ 83.298072] sp : ffff80000b3abad0
.. snip ..
[ 83.369175] Call trace:
[ 83.376282] __iommu_unmap+0x30/0x140
[ 83.378541] iommu_unmap+0x5c/0xa4
[ 83.382360] ath11k_ahb_fw_resource_deinit.part.12+0x2c/0xac [ath11k_ahb]
[ 83.385666] ath11k_ahb_free_resources+0x140/0x17c [ath11k_ahb]
[ 83.392521] ath11k_ahb_shutdown+0x34/0x40 [ath11k_ahb]
[ 83.398248] platform_shutdown+0x20/0x2c
[ 83.403455] device_shutdown+0x16c/0x1c4
[ 83.407621] kernel_restart_prepare+0x34/0x3c
[ 83.411529] kernel_restart+0x14/0x74
[ 83.415781] __do_sys_reboot+0x1c4/0x22c
[ 83.419427] __arm64_sys_reboot+0x1c/0x24
[ 83.423420] invoke_syscall+0x44/0xfc
[ 83.427326] el0_svc_common.constprop.3+0xac/0xe8
[ 83.430974] do_el0_svc+0xa0/0xa8
[ 83.435659] el0_svc+0x1c/0x44
[ 83.438957] el0t_64_sync_handler+0x60/0x144
[ 83.441910] el0t_64_sync+0x15c/0x160
[ 83.446343] Code: aa0103f4 f9400001 f90027a1 d2800001 (f94006a0)
[ 83.449903] ---[ end trace 0000000000000000 ]---
This can be reproduced by probing an AHB chipset which is not
having a fixed memory region. During reboot (or rmmod) trace
can be seen.
Fix this issue by adding a condition check on firmware fixed memory
hw_param as done in the counter initialization function.
Tested-on: IPQ8074 hw2.0 AHB WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
gpu: host1x: Fix memory leak of device names
The device names allocated by dev_set_name() need be freed
before module unloading, but they can not be freed because
the kobject's refcount which was set in device_initialize()
has not be decreased to 0.
As comment of device_add() says, if it fails, use only
put_device() drop the refcount, then the name will be
freed in kobejct_cleanup().
device_del() and put_device() can be replaced with
device_unregister(), so call it to unregister the added
successfully devices, and just call put_device() to the
not added device.
Add a release() function to device to avoid null release()
function WARNING in device_release(), it's empty, because
the context devices are freed together in
host1x_memory_context_list_free(). |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix fget leak when fs don't support nowait buffered read
Heming reported a BUG when using io_uring doing link-cp on ocfs2. [1]
Do the following steps can reproduce this BUG:
mount -t ocfs2 /dev/vdc /mnt/ocfs2
cp testfile /mnt/ocfs2/
./link-cp /mnt/ocfs2/testfile /mnt/ocfs2/testfile.1
umount /mnt/ocfs2
Then umount will fail, and it outputs:
umount: /mnt/ocfs2: target is busy.
While tracing umount, it blames mnt_get_count() not return as expected.
Do a deep investigation for fget()/fput() on related code flow, I've
finally found that fget() leaks since ocfs2 doesn't support nowait
buffered read.
io_issue_sqe
|-io_assign_file // do fget() first
|-io_read
|-io_iter_do_read
|-ocfs2_file_read_iter // return -EOPNOTSUPP
|-kiocb_done
|-io_rw_done
|-__io_complete_rw_common // set REQ_F_REISSUE
|-io_resubmit_prep
|-io_req_prep_async // override req->file, leak happens
This was introduced by commit a196c78b5443 in v5.18. Fix it by don't
re-assign req->file if it has already been assigned.
[1] https://lore.kernel.org/ocfs2-devel/ab580a75-91c8-d68a-3455-40361be1bfa8@linux.alibaba.com/T/#t |
| In the Linux kernel, the following vulnerability has been resolved:
qed: allow sleep in qed_mcp_trace_dump()
By default, qed_mcp_cmd_and_union() delays 10us at a time in a loop
that can run 500K times, so calls to qed_mcp_nvm_rd_cmd()
may block the current thread for over 5s.
We observed thread scheduling delays over 700ms in production,
with stacktraces pointing to this code as the culprit.
qed_mcp_trace_dump() is called from ethtool, so sleeping is permitted.
It already can sleep in qed_mcp_halt(), which calls qed_mcp_cmd().
Add a "can sleep" parameter to qed_find_nvram_image() and
qed_nvram_read() so they can sleep during qed_mcp_trace_dump().
qed_mcp_trace_get_meta_info() and qed_mcp_trace_read_meta(),
called only by qed_mcp_trace_dump(), allow these functions to sleep.
I can't tell if the other caller (qed_grc_dump_mcp_hw_dump()) can sleep,
so keep b_can_sleep set to false when it calls these functions.
An example stacktrace from a custom warning we added to the kernel
showing a thread that has not scheduled despite long needing resched:
[ 2745.362925,17] ------------[ cut here ]------------
[ 2745.362941,17] WARNING: CPU: 23 PID: 5640 at arch/x86/kernel/irq.c:233 do_IRQ+0x15e/0x1a0()
[ 2745.362946,17] Thread not rescheduled for 744 ms after irq 99
[ 2745.362956,17] Modules linked in: ...
[ 2745.363339,17] CPU: 23 PID: 5640 Comm: lldpd Tainted: P O 4.4.182+ #202104120910+6d1da174272d.61x
[ 2745.363343,17] Hardware name: FOXCONN MercuryB/Quicksilver Controller, BIOS H11P1N09 07/08/2020
[ 2745.363346,17] 0000000000000000 ffff885ec07c3ed8 ffffffff8131eb2f ffff885ec07c3f20
[ 2745.363358,17] ffffffff81d14f64 ffff885ec07c3f10 ffffffff81072ac2 ffff88be98ed0000
[ 2745.363369,17] 0000000000000063 0000000000000174 0000000000000074 0000000000000000
[ 2745.363379,17] Call Trace:
[ 2745.363382,17] <IRQ> [<ffffffff8131eb2f>] dump_stack+0x8e/0xcf
[ 2745.363393,17] [<ffffffff81072ac2>] warn_slowpath_common+0x82/0xc0
[ 2745.363398,17] [<ffffffff81072b4c>] warn_slowpath_fmt+0x4c/0x50
[ 2745.363404,17] [<ffffffff810d5a8e>] ? rcu_irq_exit+0xae/0xc0
[ 2745.363408,17] [<ffffffff817c99fe>] do_IRQ+0x15e/0x1a0
[ 2745.363413,17] [<ffffffff817c7ac9>] common_interrupt+0x89/0x89
[ 2745.363416,17] <EOI> [<ffffffff8132aa74>] ? delay_tsc+0x24/0x50
[ 2745.363425,17] [<ffffffff8132aa04>] __udelay+0x34/0x40
[ 2745.363457,17] [<ffffffffa04d45ff>] qed_mcp_cmd_and_union+0x36f/0x7d0 [qed]
[ 2745.363473,17] [<ffffffffa04d5ced>] qed_mcp_nvm_rd_cmd+0x4d/0x90 [qed]
[ 2745.363490,17] [<ffffffffa04e1dc7>] qed_mcp_trace_dump+0x4a7/0x630 [qed]
[ 2745.363504,17] [<ffffffffa04e2556>] ? qed_fw_asserts_dump+0x1d6/0x1f0 [qed]
[ 2745.363520,17] [<ffffffffa04e4ea7>] qed_dbg_mcp_trace_get_dump_buf_size+0x37/0x80 [qed]
[ 2745.363536,17] [<ffffffffa04ea881>] qed_dbg_feature_size+0x61/0xa0 [qed]
[ 2745.363551,17] [<ffffffffa04eb427>] qed_dbg_all_data_size+0x247/0x260 [qed]
[ 2745.363560,17] [<ffffffffa0482c10>] qede_get_regs_len+0x30/0x40 [qede]
[ 2745.363566,17] [<ffffffff816c9783>] ethtool_get_drvinfo+0xe3/0x190
[ 2745.363570,17] [<ffffffff816cc152>] dev_ethtool+0x1362/0x2140
[ 2745.363575,17] [<ffffffff8109bcc6>] ? finish_task_switch+0x76/0x260
[ 2745.363580,17] [<ffffffff817c2116>] ? __schedule+0x3c6/0x9d0
[ 2745.363585,17] [<ffffffff810dbd50>] ? hrtimer_start_range_ns+0x1d0/0x370
[ 2745.363589,17] [<ffffffff816c1e5b>] ? dev_get_by_name_rcu+0x6b/0x90
[ 2745.363594,17] [<ffffffff816de6a8>] dev_ioctl+0xe8/0x710
[ 2745.363599,17] [<ffffffff816a58a8>] sock_do_ioctl+0x48/0x60
[ 2745.363603,17] [<ffffffff816a5d87>] sock_ioctl+0x1c7/0x280
[ 2745.363608,17] [<ffffffff8111f393>] ? seccomp_phase1+0x83/0x220
[ 2745.363612,17] [<ffffffff811e3503>] do_vfs_ioctl+0x2b3/0x4e0
[ 2745.363616,17] [<ffffffff811e3771>] SyS_ioctl+0x41/0x70
[ 2745.363619,17] [<ffffffff817c6ffe>] entry_SYSCALL_64_fastpath+0x1e/0x79
[ 2745.363622,17] ---[ end trace f6954aa440266421 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
udf: Do not bother merging very long extents
When merging very long extents we try to push as much length as possible
to the first extent. However this is unnecessarily complicated and not
really worth the trouble. Furthermore there was a bug in the logic
resulting in corrupting extents in the file as syzbot reproducer shows.
So just don't bother with the merging of extents that are too long
together. |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: fix slab-use-after-free in decode_session6
When the xfrm device is set to the qdisc of the sfb type, the cb field
of the sent skb may be modified during enqueuing. Then,
slab-use-after-free may occur when the xfrm device sends IPv6 packets.
The stack information is as follows:
BUG: KASAN: slab-use-after-free in decode_session6+0x103f/0x1890
Read of size 1 at addr ffff8881111458ef by task swapper/3/0
CPU: 3 PID: 0 Comm: swapper/3 Not tainted 6.4.0-next-20230707 #409
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl+0xd9/0x150
print_address_description.constprop.0+0x2c/0x3c0
kasan_report+0x11d/0x130
decode_session6+0x103f/0x1890
__xfrm_decode_session+0x54/0xb0
xfrmi_xmit+0x173/0x1ca0
dev_hard_start_xmit+0x187/0x700
sch_direct_xmit+0x1a3/0xc30
__qdisc_run+0x510/0x17a0
__dev_queue_xmit+0x2215/0x3b10
neigh_connected_output+0x3c2/0x550
ip6_finish_output2+0x55a/0x1550
ip6_finish_output+0x6b9/0x1270
ip6_output+0x1f1/0x540
ndisc_send_skb+0xa63/0x1890
ndisc_send_rs+0x132/0x6f0
addrconf_rs_timer+0x3f1/0x870
call_timer_fn+0x1a0/0x580
expire_timers+0x29b/0x4b0
run_timer_softirq+0x326/0x910
__do_softirq+0x1d4/0x905
irq_exit_rcu+0xb7/0x120
sysvec_apic_timer_interrupt+0x97/0xc0
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x1a/0x20
RIP: 0010:intel_idle_hlt+0x23/0x30
Code: 1f 84 00 00 00 00 00 f3 0f 1e fa 41 54 41 89 d4 0f 1f 44 00 00 66 90 0f 1f 44 00 00 0f 00 2d c4 9f ab 00 0f 1f 44 00 00 fb f4 <fa> 44 89 e0 41 5c c3 66 0f 1f 44 00 00 f3 0f 1e fa 41 54 41 89 d4
RSP: 0018:ffffc90000197d78 EFLAGS: 00000246
RAX: 00000000000a83c3 RBX: ffffe8ffffd09c50 RCX: ffffffff8a22d8e5
RDX: 0000000000000001 RSI: ffffffff8d3f8080 RDI: ffffe8ffffd09c50
RBP: ffffffff8d3f8080 R08: 0000000000000001 R09: ffffed1026ba6d9d
R10: ffff888135d36ceb R11: 0000000000000001 R12: 0000000000000001
R13: ffffffff8d3f8100 R14: 0000000000000001 R15: 0000000000000000
cpuidle_enter_state+0xd3/0x6f0
cpuidle_enter+0x4e/0xa0
do_idle+0x2fe/0x3c0
cpu_startup_entry+0x18/0x20
start_secondary+0x200/0x290
secondary_startup_64_no_verify+0x167/0x16b
</TASK>
Allocated by task 939:
kasan_save_stack+0x22/0x40
kasan_set_track+0x25/0x30
__kasan_slab_alloc+0x7f/0x90
kmem_cache_alloc_node+0x1cd/0x410
kmalloc_reserve+0x165/0x270
__alloc_skb+0x129/0x330
inet6_ifa_notify+0x118/0x230
__ipv6_ifa_notify+0x177/0xbe0
addrconf_dad_completed+0x133/0xe00
addrconf_dad_work+0x764/0x1390
process_one_work+0xa32/0x16f0
worker_thread+0x67d/0x10c0
kthread+0x344/0x440
ret_from_fork+0x1f/0x30
The buggy address belongs to the object at ffff888111145800
which belongs to the cache skbuff_small_head of size 640
The buggy address is located 239 bytes inside of
freed 640-byte region [ffff888111145800, ffff888111145a80)
As commit f855691975bb ("xfrm6: Fix the nexthdr offset in
_decode_session6.") showed, xfrm_decode_session was originally intended
only for the receive path. IP6CB(skb)->nhoff is not set during
transmission. Therefore, set the cb field in the skb to 0 before
sending packets. |
| An Improper Input Validation vulnerability in the scanning logic of mmaitre314 picklescan versions up to and including 0.0.30 allows a remote attacker to bypass pickle files security checks by supplying a standard pickle file with a PyTorch-related file extension. When the pickle file incorrectly considered safe is loaded, it can lead to the execution of malicious code. |