Search

Search Results (311393 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53312 1 Linux 1 Linux Kernel 2025-09-17 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: fix net_dev_start_xmit trace event vs skb_transport_offset() After blamed commit, we must be more careful about using skb_transport_offset(), as reminded us by syzbot: WARNING: CPU: 0 PID: 10 at include/linux/skbuff.h:2868 skb_transport_offset include/linux/skbuff.h:2977 [inline] WARNING: CPU: 0 PID: 10 at include/linux/skbuff.h:2868 perf_trace_net_dev_start_xmit+0x89a/0xce0 include/trace/events/net.h:14 Modules linked in: CPU: 0 PID: 10 Comm: kworker/u4:1 Not tainted 6.1.30-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023 Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet RIP: 0010:skb_transport_header include/linux/skbuff.h:2868 [inline] RIP: 0010:skb_transport_offset include/linux/skbuff.h:2977 [inline] RIP: 0010:perf_trace_net_dev_start_xmit+0x89a/0xce0 include/trace/events/net.h:14 Code: 8b 04 25 28 00 00 00 48 3b 84 24 c0 00 00 00 0f 85 4e 04 00 00 48 8d 65 d8 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc e8 56 22 01 fd <0f> 0b e9 f6 fc ff ff 89 f9 80 e1 07 80 c1 03 38 c1 0f 8c 86 f9 ff RSP: 0018:ffffc900002bf700 EFLAGS: 00010293 RAX: ffffffff8485d8ca RBX: 000000000000ffff RCX: ffff888100914280 RDX: 0000000000000000 RSI: 000000000000ffff RDI: 000000000000ffff RBP: ffffc900002bf818 R08: ffffffff8485d5b6 R09: fffffbfff0f8fb5e R10: 0000000000000000 R11: dffffc0000000001 R12: 1ffff110217d8f67 R13: ffff88810bec7b3a R14: dffffc0000000000 R15: dffffc0000000000 FS: 0000000000000000(0000) GS:ffff8881f6a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f96cf6d52f0 CR3: 000000012224c000 CR4: 0000000000350ef0 Call Trace: <TASK> [<ffffffff84715e35>] trace_net_dev_start_xmit include/trace/events/net.h:14 [inline] [<ffffffff84715e35>] xmit_one net/core/dev.c:3643 [inline] [<ffffffff84715e35>] dev_hard_start_xmit+0x705/0x980 net/core/dev.c:3660 [<ffffffff8471a232>] __dev_queue_xmit+0x16b2/0x3370 net/core/dev.c:4324 [<ffffffff85416493>] dev_queue_xmit include/linux/netdevice.h:3030 [inline] [<ffffffff85416493>] batadv_send_skb_packet+0x3f3/0x680 net/batman-adv/send.c:108 [<ffffffff85416744>] batadv_send_broadcast_skb+0x24/0x30 net/batman-adv/send.c:127 [<ffffffff853bc52a>] batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:393 [inline] [<ffffffff853bc52a>] batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:421 [inline] [<ffffffff853bc52a>] batadv_iv_send_outstanding_bat_ogm_packet+0x69a/0x840 net/batman-adv/bat_iv_ogm.c:1701 [<ffffffff8151023c>] process_one_work+0x8ac/0x1170 kernel/workqueue.c:2289 [<ffffffff81511938>] worker_thread+0xaa8/0x12d0 kernel/workqueue.c:2436
CVE-2023-53311 1 Linux 1 Linux Kernel 2025-09-17 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix use-after-free of nilfs_root in dirtying inodes via iput During unmount process of nilfs2, nothing holds nilfs_root structure after nilfs2 detaches its writer in nilfs_detach_log_writer(). Previously, nilfs_evict_inode() could cause use-after-free read for nilfs_root if inodes are left in "garbage_list" and released by nilfs_dispose_list at the end of nilfs_detach_log_writer(), and this bug was fixed by commit 9b5a04ac3ad9 ("nilfs2: fix use-after-free bug of nilfs_root in nilfs_evict_inode()"). However, it turned out that there is another possibility of UAF in the call path where mark_inode_dirty_sync() is called from iput(): nilfs_detach_log_writer() nilfs_dispose_list() iput() mark_inode_dirty_sync() __mark_inode_dirty() nilfs_dirty_inode() __nilfs_mark_inode_dirty() nilfs_load_inode_block() --> causes UAF of nilfs_root struct This can happen after commit 0ae45f63d4ef ("vfs: add support for a lazytime mount option"), which changed iput() to call mark_inode_dirty_sync() on its final reference if i_state has I_DIRTY_TIME flag and i_nlink is non-zero. This issue appears after commit 28a65b49eb53 ("nilfs2: do not write dirty data after degenerating to read-only") when using the syzbot reproducer, but the issue has potentially existed before. Fix this issue by adding a "purging flag" to the nilfs structure, setting that flag while disposing the "garbage_list" and checking it in __nilfs_mark_inode_dirty(). Unlike commit 9b5a04ac3ad9 ("nilfs2: fix use-after-free bug of nilfs_root in nilfs_evict_inode()"), this patch does not rely on ns_writer to determine whether to skip operations, so as not to break recovery on mount. The nilfs_salvage_orphan_logs routine dirties the buffer of salvaged data before attaching the log writer, so changing __nilfs_mark_inode_dirty() to skip the operation when ns_writer is NULL will cause recovery write to fail. The purpose of using the cleanup-only flag is to allow for narrowing of such conditions.
CVE-2022-50346 1 Linux 1 Linux Kernel 2025-09-17 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: init quota for 'old.inode' in 'ext4_rename' Syzbot found the following issue: ext4_parse_param: s_want_extra_isize=128 ext4_inode_info_init: s_want_extra_isize=32 ext4_rename: old.inode=ffff88823869a2c8 old.dir=ffff888238699828 new.inode=ffff88823869d7e8 new.dir=ffff888238699828 __ext4_mark_inode_dirty: inode=ffff888238699828 ea_isize=32 want_ea_size=128 __ext4_mark_inode_dirty: inode=ffff88823869a2c8 ea_isize=32 want_ea_size=128 ext4_xattr_block_set: inode=ffff88823869a2c8 ------------[ cut here ]------------ WARNING: CPU: 13 PID: 2234 at fs/ext4/xattr.c:2070 ext4_xattr_block_set.cold+0x22/0x980 Modules linked in: RIP: 0010:ext4_xattr_block_set.cold+0x22/0x980 RSP: 0018:ffff888227d3f3b0 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff88823007a000 RCX: 0000000000000000 RDX: 0000000000000a03 RSI: 0000000000000040 RDI: ffff888230078178 RBP: 0000000000000000 R08: 000000000000002c R09: ffffed1075c7df8e R10: ffff8883ae3efc6b R11: ffffed1075c7df8d R12: 0000000000000000 R13: ffff88823869a2c8 R14: ffff8881012e0460 R15: dffffc0000000000 FS: 00007f350ac1f740(0000) GS:ffff8883ae200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f350a6ed6a0 CR3: 0000000237456000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? ext4_xattr_set_entry+0x3b7/0x2320 ? ext4_xattr_block_set+0x0/0x2020 ? ext4_xattr_set_entry+0x0/0x2320 ? ext4_xattr_check_entries+0x77/0x310 ? ext4_xattr_ibody_set+0x23b/0x340 ext4_xattr_move_to_block+0x594/0x720 ext4_expand_extra_isize_ea+0x59a/0x10f0 __ext4_expand_extra_isize+0x278/0x3f0 __ext4_mark_inode_dirty.cold+0x347/0x410 ext4_rename+0xed3/0x174f vfs_rename+0x13a7/0x2510 do_renameat2+0x55d/0x920 __x64_sys_rename+0x7d/0xb0 do_syscall_64+0x3b/0xa0 entry_SYSCALL_64_after_hwframe+0x72/0xdc As 'ext4_rename' will modify 'old.inode' ctime and mark inode dirty, which may trigger expand 'extra_isize' and allocate block. If inode didn't init quota will lead to warning. To solve above issue, init 'old.inode' firstly in 'ext4_rename'.
CVE-2022-50342 1 Linux 1 Linux Kernel 2025-09-17 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: floppy: Fix memory leak in do_floppy_init() A memory leak was reported when floppy_alloc_disk() failed in do_floppy_init(). unreferenced object 0xffff888115ed25a0 (size 8): comm "modprobe", pid 727, jiffies 4295051278 (age 25.529s) hex dump (first 8 bytes): 00 ac 67 5b 81 88 ff ff ..g[.... backtrace: [<000000007f457abb>] __kmalloc_node+0x4c/0xc0 [<00000000a87bfa9e>] blk_mq_realloc_tag_set_tags.part.0+0x6f/0x180 [<000000006f02e8b1>] blk_mq_alloc_tag_set+0x573/0x1130 [<0000000066007fd7>] 0xffffffffc06b8b08 [<0000000081f5ac40>] do_one_initcall+0xd0/0x4f0 [<00000000e26d04ee>] do_init_module+0x1a4/0x680 [<000000001bb22407>] load_module+0x6249/0x7110 [<00000000ad31ac4d>] __do_sys_finit_module+0x140/0x200 [<000000007bddca46>] do_syscall_64+0x35/0x80 [<00000000b5afec39>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 unreferenced object 0xffff88810fc30540 (size 32): comm "modprobe", pid 727, jiffies 4295051278 (age 25.529s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<000000007f457abb>] __kmalloc_node+0x4c/0xc0 [<000000006b91eab4>] blk_mq_alloc_tag_set+0x393/0x1130 [<0000000066007fd7>] 0xffffffffc06b8b08 [<0000000081f5ac40>] do_one_initcall+0xd0/0x4f0 [<00000000e26d04ee>] do_init_module+0x1a4/0x680 [<000000001bb22407>] load_module+0x6249/0x7110 [<00000000ad31ac4d>] __do_sys_finit_module+0x140/0x200 [<000000007bddca46>] do_syscall_64+0x35/0x80 [<00000000b5afec39>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 If the floppy_alloc_disk() failed, disks of current drive will not be set, thus the lastest allocated set->tag cannot be freed in the error handling path. A simple call graph shown as below: floppy_module_init() floppy_init() do_floppy_init() for (drive = 0; drive < N_DRIVE; drive++) blk_mq_alloc_tag_set() blk_mq_alloc_tag_set_tags() blk_mq_realloc_tag_set_tags() # set->tag allocated floppy_alloc_disk() blk_mq_alloc_disk() # error occurred, disks failed to allocated ->out_put_disk: for (drive = 0; drive < N_DRIVE; drive++) if (!disks[drive][0]) # the last disks is not set and loop break break; blk_mq_free_tag_set() # the latest allocated set->tag leaked Fix this problem by free the set->tag of current drive before jump to error handling path. [efremov: added stable list, changed title]
CVE-2025-39833 1 Linux 1 Linux Kernel 2025-09-17 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mISDN: hfcpci: Fix warning when deleting uninitialized timer With CONFIG_DEBUG_OBJECTS_TIMERS unloading hfcpci module leads to the following splat: [ 250.215892] ODEBUG: assert_init not available (active state 0) object: ffffffffc01a3dc0 object type: timer_list hint: 0x0 [ 250.217520] WARNING: CPU: 0 PID: 233 at lib/debugobjects.c:612 debug_print_object+0x1b6/0x2c0 [ 250.218775] Modules linked in: hfcpci(-) mISDN_core [ 250.219537] CPU: 0 UID: 0 PID: 233 Comm: rmmod Not tainted 6.17.0-rc2-g6f713187ac98 #2 PREEMPT(voluntary) [ 250.220940] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 250.222377] RIP: 0010:debug_print_object+0x1b6/0x2c0 [ 250.223131] Code: fc ff df 48 89 fa 48 c1 ea 03 80 3c 02 00 75 4f 41 56 48 8b 14 dd a0 4e 01 9f 48 89 ee 48 c7 c7 20 46 01 9f e8 cb 84d [ 250.225805] RSP: 0018:ffff888015ea7c08 EFLAGS: 00010286 [ 250.226608] RAX: 0000000000000000 RBX: 0000000000000005 RCX: ffffffff9be93a95 [ 250.227708] RDX: 1ffff1100d945138 RSI: 0000000000000008 RDI: ffff88806ca289c0 [ 250.228993] RBP: ffffffff9f014a00 R08: 0000000000000001 R09: ffffed1002bd4f39 [ 250.230043] R10: ffff888015ea79cf R11: 0000000000000001 R12: 0000000000000001 [ 250.231185] R13: ffffffff9eea0520 R14: 0000000000000000 R15: ffff888015ea7cc8 [ 250.232454] FS: 00007f3208f01540(0000) GS:ffff8880caf5a000(0000) knlGS:0000000000000000 [ 250.233851] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 250.234856] CR2: 00007f32090a7421 CR3: 0000000004d63000 CR4: 00000000000006f0 [ 250.236117] Call Trace: [ 250.236599] <TASK> [ 250.236967] ? trace_irq_enable.constprop.0+0xd4/0x130 [ 250.237920] debug_object_assert_init+0x1f6/0x310 [ 250.238762] ? __pfx_debug_object_assert_init+0x10/0x10 [ 250.239658] ? __lock_acquire+0xdea/0x1c70 [ 250.240369] __try_to_del_timer_sync+0x69/0x140 [ 250.241172] ? __pfx___try_to_del_timer_sync+0x10/0x10 [ 250.242058] ? __timer_delete_sync+0xc6/0x120 [ 250.242842] ? lock_acquire+0x30/0x80 [ 250.243474] ? __timer_delete_sync+0xc6/0x120 [ 250.244262] __timer_delete_sync+0x98/0x120 [ 250.245015] HFC_cleanup+0x10/0x20 [hfcpci] [ 250.245704] __do_sys_delete_module+0x348/0x510 [ 250.246461] ? __pfx___do_sys_delete_module+0x10/0x10 [ 250.247338] do_syscall_64+0xc1/0x360 [ 250.247924] entry_SYSCALL_64_after_hwframe+0x77/0x7f Fix this by initializing hfc_tl timer with DEFINE_TIMER macro. Also, use mod_timer instead of manual timeout update.
CVE-2025-39823 1 Linux 1 Linux Kernel 2025-09-17 7.0 High
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: use array_index_nospec with indices that come from guest min and dest_id are guest-controlled indices. Using array_index_nospec() after the bounds checks clamps these values to mitigate speculative execution side-channels.
CVE-2009-20007 1 Talkative 1 Irc 2025-09-17 N/A
Talkative IRC v0.4.4.16 is vulnerable to a stack-based buffer overflow when processing specially crafted response strings sent to a connected client. An attacker can exploit this flaw by sending an overly long message that overflows a fixed-length buffer, potentially leading to arbitrary code execution in the context of the vulnerable process. This vulnerability is exploitable remotely and does not require authentication.
CVE-2009-20005 2025-09-17 N/A
A stack-based buffer overflow exists in the UtilConfigHome.csp endpoint of InterSystems Caché 2009.1. The vulnerability is triggered by sending a specially crafted HTTP GET request containing an oversized argument to the .csp handler. Due to insufficient bounds checking, the input overflows a stack buffer, allowing an attacker to overwrite control structures and execute arbitrary code. It is unknown if this vulnerability was patched and an affected version range remains undefined.
CVE-2025-7355 1 Beefull Energy 1 Beefull App 2025-09-17 6.5 Medium
Authorization Bypass Through User-Controlled Key vulnerability in Beefull Energy Technologies Beefull App allows Exploitation of Trusted Identifiers.This issue affects Beefull App: before 24.07.2025.
CVE-2025-59333 1 Executeautomation 1 Mcp-database-server 2025-09-17 8.1 High
The mcp-database-server (MCP Server) 1.1.0 and earlier, as distributed via the npm package @executeautomation/database-server, fails to implement adequate security controls to properly enforce a "read-only" mode. This vulnerability affects only the npm distribution; other distributions are not impacted. As a result, the server is susceptible to abuse and attacks on affected database systems such as PostgreSQL, and potentially others that expose elevated functionalities. These attacks may lead to denial of service and other unexpected behaviors.
CVE-2025-59270 1 Pspete 1 Pspas 2025-09-17 3.1 Low
psPAS PowerShell module does not explicitly enforce TLS 1.2 within the 'Get-PASSAMLResponse' function during the SAML authentication process. An unauthenticated attacker in a 'Man-in-the-Middle' position could manipulate the TLS handshake and downgrade TLS to a deprecated protocol. Fixed in 7.0.209.
CVE-2025-59160 1 Matrix-org 1 Matrix-js-sdk 2025-09-17 N/A
Matrix JavaScript SDK is a Matrix Client-Server SDK for JavaScript and TypeScript. matrix-js-sdk before 38.2.0 has insufficient validation of room predecessor links in MatrixClient::getJoinedRooms, allowing a remote attacker to attempt to replace a tombstoned room with an unrelated attacker-supplied room. The issue has been patched and users should upgrade to 38.2.0. A workaround is to avoid using MatrixClient::getJoinedRooms in favor of getRooms() and filtering upgraded rooms separately.
CVE-2025-43801 1 Liferay 2 Dxp, Portal 2025-09-17 N/A
Unchecked input for loop condition vulnerability in XML-RPC in Liferay Portal 7.4.0 through 7.4.3.111, and older unsupported versions, and Liferay DXP 2023.Q4.0, 2023.Q3.1 through 2023.Q3.4, 7.4 GA through update 92, 7.3 GA through update 35, and older unsupported versions allows remote attackers to perform a denial-of-service (DoS) attacks via a crafted XML-RPC request.
CVE-2025-39824 1 Linux 1 Linux Kernel 2025-09-17 7.0 High
In the Linux kernel, the following vulnerability has been resolved: HID: asus: fix UAF via HID_CLAIMED_INPUT validation After hid_hw_start() is called hidinput_connect() will eventually be called to set up the device with the input layer since the HID_CONNECT_DEFAULT connect mask is used. During hidinput_connect() all input and output reports are processed and corresponding hid_inputs are allocated and configured via hidinput_configure_usages(). This process involves slot tagging report fields and configuring usages by setting relevant bits in the capability bitmaps. However it is possible that the capability bitmaps are not set at all leading to the subsequent hidinput_has_been_populated() check to fail leading to the freeing of the hid_input and the underlying input device. This becomes problematic because a malicious HID device like a ASUS ROG N-Key keyboard can trigger the above scenario via a specially crafted descriptor which then leads to a user-after-free when the name of the freed input device is written to later on after hid_hw_start(). Below, report 93 intentionally utilises the HID_UP_UNDEFINED Usage Page which is skipped during usage configuration, leading to the frees. 0x05, 0x0D, // Usage Page (Digitizer) 0x09, 0x05, // Usage (Touch Pad) 0xA1, 0x01, // Collection (Application) 0x85, 0x0D, // Report ID (13) 0x06, 0x00, 0xFF, // Usage Page (Vendor Defined 0xFF00) 0x09, 0xC5, // Usage (0xC5) 0x15, 0x00, // Logical Minimum (0) 0x26, 0xFF, 0x00, // Logical Maximum (255) 0x75, 0x08, // Report Size (8) 0x95, 0x04, // Report Count (4) 0xB1, 0x02, // Feature (Data,Var,Abs) 0x85, 0x5D, // Report ID (93) 0x06, 0x00, 0x00, // Usage Page (Undefined) 0x09, 0x01, // Usage (0x01) 0x15, 0x00, // Logical Minimum (0) 0x26, 0xFF, 0x00, // Logical Maximum (255) 0x75, 0x08, // Report Size (8) 0x95, 0x1B, // Report Count (27) 0x81, 0x02, // Input (Data,Var,Abs) 0xC0, // End Collection Below is the KASAN splat after triggering the UAF: [ 21.672709] ================================================================== [ 21.673700] BUG: KASAN: slab-use-after-free in asus_probe+0xeeb/0xf80 [ 21.673700] Write of size 8 at addr ffff88810a0ac000 by task kworker/1:2/54 [ 21.673700] [ 21.673700] CPU: 1 UID: 0 PID: 54 Comm: kworker/1:2 Not tainted 6.16.0-rc4-g9773391cf4dd-dirty #36 PREEMPT(voluntary) [ 21.673700] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 [ 21.673700] Call Trace: [ 21.673700] <TASK> [ 21.673700] dump_stack_lvl+0x5f/0x80 [ 21.673700] print_report+0xd1/0x660 [ 21.673700] kasan_report+0xe5/0x120 [ 21.673700] __asan_report_store8_noabort+0x1b/0x30 [ 21.673700] asus_probe+0xeeb/0xf80 [ 21.673700] hid_device_probe+0x2ee/0x700 [ 21.673700] really_probe+0x1c6/0x6b0 [ 21.673700] __driver_probe_device+0x24f/0x310 [ 21.673700] driver_probe_device+0x4e/0x220 [...] [ 21.673700] [ 21.673700] Allocated by task 54: [ 21.673700] kasan_save_stack+0x3d/0x60 [ 21.673700] kasan_save_track+0x18/0x40 [ 21.673700] kasan_save_alloc_info+0x3b/0x50 [ 21.673700] __kasan_kmalloc+0x9c/0xa0 [ 21.673700] __kmalloc_cache_noprof+0x139/0x340 [ 21.673700] input_allocate_device+0x44/0x370 [ 21.673700] hidinput_connect+0xcb6/0x2630 [ 21.673700] hid_connect+0xf74/0x1d60 [ 21.673700] hid_hw_start+0x8c/0x110 [ 21.673700] asus_probe+0x5a3/0xf80 [ 21.673700] hid_device_probe+0x2ee/0x700 [ 21.673700] really_probe+0x1c6/0x6b0 [ 21.673700] __driver_probe_device+0x24f/0x310 [ 21.673700] driver_probe_device+0x4e/0x220 [...] [ 21.673700] [ 21.673700] Freed by task 54: [ 21.673700] kasan_save_stack+0x3d/0x60 [ 21.673700] kasan_save_track+0x18/0x40 [ 21.673700] kasan_save_free_info+0x3f/0x60 [ 21.673700] __kasan_slab_free+0x3c/0x50 [ 21.673700] kfre ---truncated---
CVE-2025-39822 1 Linux 1 Linux Kernel 2025-09-17 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring/kbuf: fix signedness in this_len calculation When importing and using buffers, buf->len is considered unsigned. However, buf->len is converted to signed int when committing. This can lead to unexpected behavior if the buffer is large enough to be interpreted as a negative value. Make min_t calculation unsigned.
CVE-2025-10492 1 Jaspersoft 1 Jasperreports 2025-09-17 N/A
A Java deserialisation vulnerability has been discovered in Jaspersoft Library. Improper handling of externally supplied data may allow attackers to execute arbitrary code remotely on systems that use the affected library
CVE-2025-37126 2 Arubanetworks, Hp 2 Edgeconnect Enterprise, Arubaos 2025-09-17 7.2 High
A vulnerability exists in the HPE Aruba Networking EdgeConnect SD-WAN Gateways Command Line Interface that allows remote authenticated users to run arbitrary commands on the underlying host. Successful exploitation of this vulnerability will result in the ability to execute arbitrary commands as root on the underlying operating system.
CVE-2025-10143 1 Wordpress 1 Wordpress 2025-09-17 7.5 High
The Catch Dark Mode plugin for WordPress is vulnerable to Local File Inclusion in all versions up to, and including, 2.0 via the 'catch_dark_mode' shortcode. This makes it possible for authenticated attackers, with Contributor-level access and above, to include and execute arbitrary .php files on the server, allowing the execution of any PHP code in those files. This can be used to bypass access controls, obtain sensitive data, or achieve code execution in cases where .php file types can be uploaded and included.
CVE-2025-10125 2 Strangerstudios, Wordpress 2 Memberlite Shortcodes, Wordpress 2025-09-17 6.4 Medium
The Memberlite Shortcodes plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugins's 'row' shortcode in all versions up to, and including, 1.4 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2025-10058 2025-09-17 8.1 High
The WP Import – Ultimate CSV XML Importer for WordPress plugin for WordPress is vulnerable to arbitrary file deletion due to insufficient file path validation in the upload_function() function in all versions up to, and including, 7.27. This makes it possible for authenticated attackers, with Subscriber-level access and above, to delete arbitrary files on the server, which can easily lead to remote code execution when the right file is deleted (such as wp-config.php).