| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Release hbalock before calling lpfc_worker_wake_up()
lpfc_worker_wake_up() calls the lpfc_work_done() routine, which takes the
hbalock. Thus, lpfc_worker_wake_up() should not be called while holding the
hbalock to avoid potential deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: read txq->read_ptr under lock
If we read txq->read_ptr without lock, we can read the same
value twice, then obtain the lock, and reclaim from there
to two different places, but crucially reclaim the same
entry twice, resulting in the WARN_ONCE() a little later.
Fix that by reading txq->read_ptr under lock. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: CPPC: Use access_width over bit_width for system memory accesses
To align with ACPI 6.3+, since bit_width can be any 8-bit value, it
cannot be depended on to be always on a clean 8b boundary. This was
uncovered on the Cobalt 100 platform.
SError Interrupt on CPU26, code 0xbe000011 -- SError
CPU: 26 PID: 1510 Comm: systemd-udevd Not tainted 5.15.2.1-13 #1
Hardware name: MICROSOFT CORPORATION, BIOS MICROSOFT CORPORATION
pstate: 62400009 (nZCv daif +PAN -UAO +TCO -DIT -SSBS BTYPE=--)
pc : cppc_get_perf_caps+0xec/0x410
lr : cppc_get_perf_caps+0xe8/0x410
sp : ffff8000155ab730
x29: ffff8000155ab730 x28: ffff0080139d0038 x27: ffff0080139d0078
x26: 0000000000000000 x25: ffff0080139d0058 x24: 00000000ffffffff
x23: ffff0080139d0298 x22: ffff0080139d0278 x21: 0000000000000000
x20: ffff00802b251910 x19: ffff0080139d0000 x18: ffffffffffffffff
x17: 0000000000000000 x16: ffffdc7e111bad04 x15: ffff00802b251008
x14: ffffffffffffffff x13: ffff013f1fd63300 x12: 0000000000000006
x11: ffffdc7e128f4420 x10: 0000000000000000 x9 : ffffdc7e111badec
x8 : ffff00802b251980 x7 : 0000000000000000 x6 : ffff0080139d0028
x5 : 0000000000000000 x4 : ffff0080139d0018 x3 : 00000000ffffffff
x2 : 0000000000000008 x1 : ffff8000155ab7a0 x0 : 0000000000000000
Kernel panic - not syncing: Asynchronous SError Interrupt
CPU: 26 PID: 1510 Comm: systemd-udevd Not tainted
5.15.2.1-13 #1
Hardware name: MICROSOFT CORPORATION, BIOS MICROSOFT CORPORATION
Call trace:
dump_backtrace+0x0/0x1e0
show_stack+0x24/0x30
dump_stack_lvl+0x8c/0xb8
dump_stack+0x18/0x34
panic+0x16c/0x384
add_taint+0x0/0xc0
arm64_serror_panic+0x7c/0x90
arm64_is_fatal_ras_serror+0x34/0xa4
do_serror+0x50/0x6c
el1h_64_error_handler+0x40/0x74
el1h_64_error+0x7c/0x80
cppc_get_perf_caps+0xec/0x410
cppc_cpufreq_cpu_init+0x74/0x400 [cppc_cpufreq]
cpufreq_online+0x2dc/0xa30
cpufreq_add_dev+0xc0/0xd4
subsys_interface_register+0x134/0x14c
cpufreq_register_driver+0x1b0/0x354
cppc_cpufreq_init+0x1a8/0x1000 [cppc_cpufreq]
do_one_initcall+0x50/0x250
do_init_module+0x60/0x27c
load_module+0x2300/0x2570
__do_sys_finit_module+0xa8/0x114
__arm64_sys_finit_module+0x2c/0x3c
invoke_syscall+0x78/0x100
el0_svc_common.constprop.0+0x180/0x1a0
do_el0_svc+0x84/0xa0
el0_svc+0x2c/0xc0
el0t_64_sync_handler+0xa4/0x12c
el0t_64_sync+0x1a4/0x1a8
Instead, use access_width to determine the size and use the offset and
width to shift and mask the bits to read/write out. Make sure to add a
check for system memory since pcc redefines the access_width to
subspace id.
If access_width is not set, then fall back to using bit_width.
[ rjw: Subject and changelog edits, comment adjustments ] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/client: Fully protect modes[] with dev->mode_config.mutex
The modes[] array contains pointers to modes on the connectors'
mode lists, which are protected by dev->mode_config.mutex.
Thus we need to extend modes[] the same protection or by the
time we use it the elements may already be pointing to
freed/reused memory. |
| In the Linux kernel, the following vulnerability has been resolved:
dyndbg: fix old BUG_ON in >control parser
Fix a BUG_ON from 2009. Even if it looks "unreachable" (I didn't
really look), lets make sure by removing it, doing pr_err and return
-EINVAL instead. |
| In the Linux kernel, the following vulnerability has been resolved:
VMCI: Fix memcpy() run-time warning in dg_dispatch_as_host()
Syzkaller hit 'WARNING in dg_dispatch_as_host' bug.
memcpy: detected field-spanning write (size 56) of single field "&dg_info->msg"
at drivers/misc/vmw_vmci/vmci_datagram.c:237 (size 24)
WARNING: CPU: 0 PID: 1555 at drivers/misc/vmw_vmci/vmci_datagram.c:237
dg_dispatch_as_host+0x88e/0xa60 drivers/misc/vmw_vmci/vmci_datagram.c:237
Some code commentry, based on my understanding:
544 #define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size)
/// This is 24 + payload_size
memcpy(&dg_info->msg, dg, dg_size);
Destination = dg_info->msg ---> this is a 24 byte
structure(struct vmci_datagram)
Source = dg --> this is a 24 byte structure (struct vmci_datagram)
Size = dg_size = 24 + payload_size
{payload_size = 56-24 =32} -- Syzkaller managed to set payload_size to 32.
35 struct delayed_datagram_info {
36 struct datagram_entry *entry;
37 struct work_struct work;
38 bool in_dg_host_queue;
39 /* msg and msg_payload must be together. */
40 struct vmci_datagram msg;
41 u8 msg_payload[];
42 };
So those extra bytes of payload are copied into msg_payload[], a run time
warning is seen while fuzzing with Syzkaller.
One possible way to fix the warning is to split the memcpy() into
two parts -- one -- direct assignment of msg and second taking care of payload.
Gustavo quoted:
"Under FORTIFY_SOURCE we should not copy data across multiple members
in a structure." |
| In the Linux kernel, the following vulnerability has been resolved:
dma-direct: Leak pages on dma_set_decrypted() failure
On TDX it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
DMA could free decrypted/shared pages if dma_set_decrypted() fails. This
should be a rare case. Just leak the pages in this case instead of
freeing them. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: reduce rtnl pressure in smc_pnet_create_pnetids_list()
Many syzbot reports show extreme rtnl pressure, and many of them hint
that smc acquires rtnl in netns creation for no good reason [1]
This patch returns early from smc_pnet_net_init()
if there is no netdevice yet.
I am not even sure why smc_pnet_create_pnetids_list() even exists,
because smc_pnet_netdev_event() is also calling
smc_pnet_add_base_pnetid() when handling NETDEV_UP event.
[1] extract of typical syzbot reports
2 locks held by syz-executor.3/12252:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.4/12253:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.1/12257:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.2/12261:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.0/12265:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.3/12268:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.4/12271:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.1/12274:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
2 locks held by syz-executor.2/12280:
#0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline]
#1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 |
| In the Linux kernel, the following vulnerability has been resolved:
block: prevent division by zero in blk_rq_stat_sum()
The expression dst->nr_samples + src->nr_samples may
have zero value on overflow. It is necessary to add
a check to avoid division by zero.
Found by Linux Verification Center (linuxtesting.org) with Svace. |
| In the Linux kernel, the following vulnerability has been resolved:
of: module: prevent NULL pointer dereference in vsnprintf()
In of_modalias(), we can get passed the str and len parameters which would
cause a kernel oops in vsnprintf() since it only allows passing a NULL ptr
when the length is also 0. Also, we need to filter out the negative values
of the len parameter as these will result in a really huge buffer since
snprintf() takes size_t parameter while ours is ssize_t...
Found by Linux Verification Center (linuxtesting.org) with the Svace static
analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/coco: Require seeding RNG with RDRAND on CoCo systems
There are few uses of CoCo that don't rely on working cryptography and
hence a working RNG. Unfortunately, the CoCo threat model means that the
VM host cannot be trusted and may actively work against guests to
extract secrets or manipulate computation. Since a malicious host can
modify or observe nearly all inputs to guests, the only remaining source
of entropy for CoCo guests is RDRAND.
If RDRAND is broken -- due to CPU hardware fault -- the RNG as a whole
is meant to gracefully continue on gathering entropy from other sources,
but since there aren't other sources on CoCo, this is catastrophic.
This is mostly a concern at boot time when initially seeding the RNG, as
after that the consequences of a broken RDRAND are much more
theoretical.
So, try at boot to seed the RNG using 256 bits of RDRAND output. If this
fails, panic(). This will also trigger if the system is booted without
RDRAND, as RDRAND is essential for a safe CoCo boot.
Add this deliberately to be "just a CoCo x86 driver feature" and not
part of the RNG itself. Many device drivers and platforms have some
desire to contribute something to the RNG, and add_device_randomness()
is specifically meant for this purpose.
Any driver can call it with seed data of any quality, or even garbage
quality, and it can only possibly make the quality of the RNG better or
have no effect, but can never make it worse.
Rather than trying to build something into the core of the RNG, consider
the particular CoCo issue just a CoCo issue, and therefore separate it
all out into driver (well, arch/platform) code.
[ bp: Massage commit message. ] |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix UAF in smb2_reconnect_server()
The UAF bug is due to smb2_reconnect_server() accessing a session that
is already being teared down by another thread that is executing
__cifs_put_smb_ses(). This can happen when (a) the client has
connection to the server but no session or (b) another thread ends up
setting @ses->ses_status again to something different than
SES_EXITING.
To fix this, we need to make sure to unconditionally set
@ses->ses_status to SES_EXITING and prevent any other threads from
setting a new status while we're still tearing it down.
The following can be reproduced by adding some delay to right after
the ipc is freed in __cifs_put_smb_ses() - which will give
smb2_reconnect_server() worker a chance to run and then accessing
@ses->ipc:
kinit ...
mount.cifs //srv/share /mnt/1 -o sec=krb5,nohandlecache,echo_interval=10
[disconnect srv]
ls /mnt/1 &>/dev/null
sleep 30
kdestroy
[reconnect srv]
sleep 10
umount /mnt/1
...
CIFS: VFS: Verify user has a krb5 ticket and keyutils is installed
CIFS: VFS: \\srv Send error in SessSetup = -126
CIFS: VFS: Verify user has a krb5 ticket and keyutils is installed
CIFS: VFS: \\srv Send error in SessSetup = -126
general protection fault, probably for non-canonical address
0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP NOPTI
CPU: 3 PID: 50 Comm: kworker/3:1 Not tainted 6.9.0-rc2 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39
04/01/2014
Workqueue: cifsiod smb2_reconnect_server [cifs]
RIP: 0010:__list_del_entry_valid_or_report+0x33/0xf0
Code: 4f 08 48 85 d2 74 42 48 85 c9 74 59 48 b8 00 01 00 00 00 00 ad
de 48 39 c2 74 61 48 b8 22 01 00 00 00 00 74 69 <48> 8b 01 48 39 f8 75
7b 48 8b 72 08 48 39 c6 0f 85 88 00 00 00 b8
RSP: 0018:ffffc900001bfd70 EFLAGS: 00010a83
RAX: dead000000000122 RBX: ffff88810da53838 RCX: 6b6b6b6b6b6b6b6b
RDX: 6b6b6b6b6b6b6b6b RSI: ffffffffc02f6878 RDI: ffff88810da53800
RBP: ffff88810da53800 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: ffff88810c064000
R13: 0000000000000001 R14: ffff88810c064000 R15: ffff8881039cc000
FS: 0000000000000000(0000) GS:ffff888157c00000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fe3728b1000 CR3: 000000010caa4000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
<TASK>
? die_addr+0x36/0x90
? exc_general_protection+0x1c1/0x3f0
? asm_exc_general_protection+0x26/0x30
? __list_del_entry_valid_or_report+0x33/0xf0
__cifs_put_smb_ses+0x1ae/0x500 [cifs]
smb2_reconnect_server+0x4ed/0x710 [cifs]
process_one_work+0x205/0x6b0
worker_thread+0x191/0x360
? __pfx_worker_thread+0x10/0x10
kthread+0xe2/0x110
? __pfx_kthread+0x10/0x10
ret_from_fork+0x34/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: guarantee refcounted children from parent session
Avoid potential use-after-free bugs when walking DFS referrals,
mounting and performing DFS failover by ensuring that all children
from parent @tcon->ses are also refcounted. They're all needed across
the entire DFS mount. Get rid of @tcon->dfs_ses_list while we're at
it, too. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in cifs_stats_proc_show()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in cifs_dump_full_key()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in smb2_is_valid_oplock_break()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in is_valid_oplock_break()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in smb2_is_network_name_deleted()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in cifs_signal_cifsd_for_reconnect()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Use device rbtree in iopf reporting path
The existing I/O page fault handler currently locates the PCI device by
calling pci_get_domain_bus_and_slot(). This function searches the list
of all PCI devices until the desired device is found. To improve lookup
efficiency, replace it with device_rbtree_find() to search the device
within the probed device rbtree.
The I/O page fault is initiated by the device, which does not have any
synchronization mechanism with the software to ensure that the device
stays in the probed device tree. Theoretically, a device could be released
by the IOMMU subsystem after device_rbtree_find() and before
iopf_get_dev_fault_param(), which would cause a use-after-free problem.
Add a mutex to synchronize the I/O page fault reporting path and the IOMMU
release device path. This lock doesn't introduce any performance overhead,
as the conflict between I/O page fault reporting and device releasing is
very rare. |