CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
mm/mremap.c in the Linux kernel before 5.13.3 has a use-after-free via a stale TLB because an rmap lock is not held during a PUD move. |
In drivers/media/dvb-core/dmxdev.c in the Linux kernel through 5.19.10, there is a use-after-free caused by refcount races, affecting dvb_demux_open and dvb_dmxdev_release. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/mes: fix use-after-free issue
Delete fence fallback timer to fix the ramdom
use-after-free issue.
v2: move to amdgpu_mes.c |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix OOB read when checking dotdot dir
Mounting a corrupted filesystem with directory which contains '.' dir
entry with rec_len == block size results in out-of-bounds read (later
on, when the corrupted directory is removed).
ext4_empty_dir() assumes every ext4 directory contains at least '.'
and '..' as directory entries in the first data block. It first loads
the '.' dir entry, performs sanity checks by calling ext4_check_dir_entry()
and then uses its rec_len member to compute the location of '..' dir
entry (in ext4_next_entry). It assumes the '..' dir entry fits into the
same data block.
If the rec_len of '.' is precisely one block (4KB), it slips through the
sanity checks (it is considered the last directory entry in the data
block) and leaves "struct ext4_dir_entry_2 *de" point exactly past the
memory slot allocated to the data block. The following call to
ext4_check_dir_entry() on new value of de then dereferences this pointer
which results in out-of-bounds mem access.
Fix this by extending __ext4_check_dir_entry() to check for '.' dir
entries that reach the end of data block. Make sure to ignore the phony
dir entries for checksum (by checking name_len for non-zero).
Note: This is reported by KASAN as use-after-free in case another
structure was recently freed from the slot past the bound, but it is
really an OOB read.
This issue was found by syzkaller tool.
Call Trace:
[ 38.594108] BUG: KASAN: slab-use-after-free in __ext4_check_dir_entry+0x67e/0x710
[ 38.594649] Read of size 2 at addr ffff88802b41a004 by task syz-executor/5375
[ 38.595158]
[ 38.595288] CPU: 0 UID: 0 PID: 5375 Comm: syz-executor Not tainted 6.14.0-rc7 #1
[ 38.595298] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[ 38.595304] Call Trace:
[ 38.595308] <TASK>
[ 38.595311] dump_stack_lvl+0xa7/0xd0
[ 38.595325] print_address_description.constprop.0+0x2c/0x3f0
[ 38.595339] ? __ext4_check_dir_entry+0x67e/0x710
[ 38.595349] print_report+0xaa/0x250
[ 38.595359] ? __ext4_check_dir_entry+0x67e/0x710
[ 38.595368] ? kasan_addr_to_slab+0x9/0x90
[ 38.595378] kasan_report+0xab/0xe0
[ 38.595389] ? __ext4_check_dir_entry+0x67e/0x710
[ 38.595400] __ext4_check_dir_entry+0x67e/0x710
[ 38.595410] ext4_empty_dir+0x465/0x990
[ 38.595421] ? __pfx_ext4_empty_dir+0x10/0x10
[ 38.595432] ext4_rmdir.part.0+0x29a/0xd10
[ 38.595441] ? __dquot_initialize+0x2a7/0xbf0
[ 38.595455] ? __pfx_ext4_rmdir.part.0+0x10/0x10
[ 38.595464] ? __pfx___dquot_initialize+0x10/0x10
[ 38.595478] ? down_write+0xdb/0x140
[ 38.595487] ? __pfx_down_write+0x10/0x10
[ 38.595497] ext4_rmdir+0xee/0x140
[ 38.595506] vfs_rmdir+0x209/0x670
[ 38.595517] ? lookup_one_qstr_excl+0x3b/0x190
[ 38.595529] do_rmdir+0x363/0x3c0
[ 38.595537] ? __pfx_do_rmdir+0x10/0x10
[ 38.595544] ? strncpy_from_user+0x1ff/0x2e0
[ 38.595561] __x64_sys_unlinkat+0xf0/0x130
[ 38.595570] do_syscall_64+0x5b/0x180
[ 38.595583] entry_SYSCALL_64_after_hwframe+0x76/0x7e |
An issue was discovered in net/ceph/messenger_v2.c in the Linux kernel before 6.4.5. There is an integer signedness error, leading to a buffer overflow and remote code execution via HELLO or one of the AUTH frames. This occurs because of an untrusted length taken from a TCP packet in ceph_decode_32. |
In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: Fix UAF of leds class devs at unbinding
The LED class devices that are created by HD-audio codec drivers are
registered via devm_led_classdev_register() and associated with the
HD-audio codec device. Unfortunately, it turned out that the devres
release doesn't work for this case; namely, since the codec resource
release happens before the devm call chain, it triggers a NULL
dereference or a UAF for a stale set_brightness_delay callback.
For fixing the bug, this patch changes the LED class device register
and unregister in a manual manner without devres, keeping the
instances in hda_gen_spec. |
In the Linux kernel, the following vulnerability has been resolved:
tpm_tis_spi: Account for SPI header when allocating TPM SPI xfer buffer
The TPM SPI transfer mechanism uses MAX_SPI_FRAMESIZE for computing the
maximum transfer length and the size of the transfer buffer. As such, it
does not account for the 4 bytes of header that prepends the SPI data
frame. This can result in out-of-bounds accesses and was confirmed with
KASAN.
Introduce SPI_HDRSIZE to account for the header and use to allocate the
transfer buffer. |
It was discovered that the cls_route filter implementation in the Linux kernel would not remove an old filter from the hashtable before freeing it if its handle had the value 0. |
CGI::Cookie.parse in Ruby through 2.6.8 mishandles security prefixes in cookie names. This also affects the CGI gem through 0.3.0 for Ruby. |
In the Linux kernel, the following vulnerability has been resolved:
block: Fix wrong offset in bio_truncate()
bio_truncate() clears the buffer outside of last block of bdev, however
current bio_truncate() is using the wrong offset of page. So it can
return the uninitialized data.
This happened when both of truncated/corrupted FS and userspace (via
bdev) are trying to read the last of bdev. |
In the Linux kernel, the following vulnerability has been resolved:
ipv4: Fix uninit-value access in __ip_make_skb()
KMSAN reported uninit-value access in __ip_make_skb() [1]. __ip_make_skb()
tests HDRINCL to know if the skb has icmphdr. However, HDRINCL can cause a
race condition. If calling setsockopt(2) with IP_HDRINCL changes HDRINCL
while __ip_make_skb() is running, the function will access icmphdr in the
skb even if it is not included. This causes the issue reported by KMSAN.
Check FLOWI_FLAG_KNOWN_NH on fl4->flowi4_flags instead of testing HDRINCL
on the socket.
Also, fl4->fl4_icmp_type and fl4->fl4_icmp_code are not initialized. These
are union in struct flowi4 and are implicitly initialized by
flowi4_init_output(), but we should not rely on specific union layout.
Initialize these explicitly in raw_sendmsg().
[1]
BUG: KMSAN: uninit-value in __ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481
__ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481
ip_finish_skb include/net/ip.h:243 [inline]
ip_push_pending_frames+0x4c/0x5c0 net/ipv4/ip_output.c:1508
raw_sendmsg+0x2381/0x2690 net/ipv4/raw.c:654
inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x274/0x3c0 net/socket.c:745
__sys_sendto+0x62c/0x7b0 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x130/0x200 net/socket.c:2199
do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3804 [inline]
slab_alloc_node mm/slub.c:3845 [inline]
kmem_cache_alloc_node+0x5f6/0xc50 mm/slub.c:3888
kmalloc_reserve+0x13c/0x4a0 net/core/skbuff.c:577
__alloc_skb+0x35a/0x7c0 net/core/skbuff.c:668
alloc_skb include/linux/skbuff.h:1318 [inline]
__ip_append_data+0x49ab/0x68c0 net/ipv4/ip_output.c:1128
ip_append_data+0x1e7/0x260 net/ipv4/ip_output.c:1365
raw_sendmsg+0x22b1/0x2690 net/ipv4/raw.c:648
inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x274/0x3c0 net/socket.c:745
__sys_sendto+0x62c/0x7b0 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x130/0x200 net/socket.c:2199
do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x6d/0x75
CPU: 1 PID: 15709 Comm: syz-executor.7 Not tainted 6.8.0-11567-gb3603fcb79b1 #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-1.fc39 04/01/2014 |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix potential uninit-value access in __ip6_make_skb()
As it was done in commit fc1092f51567 ("ipv4: Fix uninit-value access in
__ip_make_skb()") for IPv4, check FLOWI_FLAG_KNOWN_NH on fl6->flowi6_flags
instead of testing HDRINCL on the socket to avoid a race condition which
causes uninit-value access. |
In the Linux kernel, the following vulnerability has been resolved:
mm/vmscan: fix a bug calling wakeup_kswapd() with a wrong zone index
With numa balancing on, when a numa system is running where a numa node
doesn't have its local memory so it has no managed zones, the following
oops has been observed. It's because wakeup_kswapd() is called with a
wrong zone index, -1. Fixed it by checking the index before calling
wakeup_kswapd().
> BUG: unable to handle page fault for address: 00000000000033f3
> #PF: supervisor read access in kernel mode
> #PF: error_code(0x0000) - not-present page
> PGD 0 P4D 0
> Oops: 0000 [#1] PREEMPT SMP NOPTI
> CPU: 2 PID: 895 Comm: masim Not tainted 6.6.0-dirty #255
> Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
> rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
> RIP: 0010:wakeup_kswapd (./linux/mm/vmscan.c:7812)
> Code: (omitted)
> RSP: 0000:ffffc90004257d58 EFLAGS: 00010286
> RAX: ffffffffffffffff RBX: ffff88883fff0480 RCX: 0000000000000003
> RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88883fff0480
> RBP: ffffffffffffffff R08: ff0003ffffffffff R09: ffffffffffffffff
> R10: ffff888106c95540 R11: 0000000055555554 R12: 0000000000000003
> R13: 0000000000000000 R14: 0000000000000000 R15: ffff88883fff0940
> FS: 00007fc4b8124740(0000) GS:ffff888827c00000(0000) knlGS:0000000000000000
> CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
> CR2: 00000000000033f3 CR3: 000000026cc08004 CR4: 0000000000770ee0
> DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
> DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
> PKRU: 55555554
> Call Trace:
> <TASK>
> ? __die
> ? page_fault_oops
> ? __pte_offset_map_lock
> ? exc_page_fault
> ? asm_exc_page_fault
> ? wakeup_kswapd
> migrate_misplaced_page
> __handle_mm_fault
> handle_mm_fault
> do_user_addr_fault
> exc_page_fault
> asm_exc_page_fault
> RIP: 0033:0x55b897ba0808
> Code: (omitted)
> RSP: 002b:00007ffeefa821a0 EFLAGS: 00010287
> RAX: 000055b89983acd0 RBX: 00007ffeefa823f8 RCX: 000055b89983acd0
> RDX: 00007fc2f8122010 RSI: 0000000000020000 RDI: 000055b89983acd0
> RBP: 00007ffeefa821a0 R08: 0000000000000037 R09: 0000000000000075
> R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000
> R13: 00007ffeefa82410 R14: 000055b897ba5dd8 R15: 00007fc4b8340000
> </TASK> |
In the Linux kernel, the following vulnerability has been resolved:
arm64/sme: Always exit sme_alloc() early with existing storage
When sme_alloc() is called with existing storage and we are not flushing we
will always allocate new storage, both leaking the existing storage and
corrupting the state. Fix this by separating the checks for flushing and
for existing storage as we do for SVE.
Callers that reallocate (eg, due to changing the vector length) should
call sme_free() themselves. |
In the Linux kernel, the following vulnerability has been resolved:
cachefiles: fix slab-use-after-free in cachefiles_withdraw_cookie()
We got the following issue in our fault injection stress test:
==================================================================
BUG: KASAN: slab-use-after-free in cachefiles_withdraw_cookie+0x4d9/0x600
Read of size 8 at addr ffff888118efc000 by task kworker/u78:0/109
CPU: 13 PID: 109 Comm: kworker/u78:0 Not tainted 6.8.0-dirty #566
Call Trace:
<TASK>
kasan_report+0x93/0xc0
cachefiles_withdraw_cookie+0x4d9/0x600
fscache_cookie_state_machine+0x5c8/0x1230
fscache_cookie_worker+0x91/0x1c0
process_one_work+0x7fa/0x1800
[...]
Allocated by task 117:
kmalloc_trace+0x1b3/0x3c0
cachefiles_acquire_volume+0xf3/0x9c0
fscache_create_volume_work+0x97/0x150
process_one_work+0x7fa/0x1800
[...]
Freed by task 120301:
kfree+0xf1/0x2c0
cachefiles_withdraw_cache+0x3fa/0x920
cachefiles_put_unbind_pincount+0x1f6/0x250
cachefiles_daemon_release+0x13b/0x290
__fput+0x204/0xa00
task_work_run+0x139/0x230
do_exit+0x87a/0x29b0
[...]
==================================================================
Following is the process that triggers the issue:
p1 | p2
------------------------------------------------------------
fscache_begin_lookup
fscache_begin_volume_access
fscache_cache_is_live(fscache_cache)
cachefiles_daemon_release
cachefiles_put_unbind_pincount
cachefiles_daemon_unbind
cachefiles_withdraw_cache
fscache_withdraw_cache
fscache_set_cache_state(cache, FSCACHE_CACHE_IS_WITHDRAWN);
cachefiles_withdraw_objects(cache)
fscache_wait_for_objects(fscache)
atomic_read(&fscache_cache->object_count) == 0
fscache_perform_lookup
cachefiles_lookup_cookie
cachefiles_alloc_object
refcount_set(&object->ref, 1);
object->volume = volume
fscache_count_object(vcookie->cache);
atomic_inc(&fscache_cache->object_count)
cachefiles_withdraw_volumes
cachefiles_withdraw_volume
fscache_withdraw_volume
__cachefiles_free_volume
kfree(cachefiles_volume)
fscache_cookie_state_machine
cachefiles_withdraw_cookie
cache = object->volume->cache;
// cachefiles_volume UAF !!!
After setting FSCACHE_CACHE_IS_WITHDRAWN, wait for all the cookie lookups
to complete first, and then wait for fscache_cache->object_count == 0 to
avoid the cookie exiting after the volume has been freed and triggering
the above issue. Therefore call fscache_withdraw_volume() before calling
cachefiles_withdraw_objects().
This way, after setting FSCACHE_CACHE_IS_WITHDRAWN, only the following two
cases will occur:
1) fscache_begin_lookup fails in fscache_begin_volume_access().
2) fscache_withdraw_volume() will ensure that fscache_count_object() has
been executed before calling fscache_wait_for_objects(). |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix use after free on unload
System crash is observed with stack trace warning of use after
free. There are 2 signals to tell dpc_thread to terminate (UNLOADING
flag and kthread_stop).
On setting the UNLOADING flag when dpc_thread happens to run at the time
and sees the flag, this causes dpc_thread to exit and clean up
itself. When kthread_stop is called for final cleanup, this causes use
after free.
Remove UNLOADING signal to terminate dpc_thread. Use the kthread_stop
as the main signal to exit dpc_thread.
[596663.812935] kernel BUG at mm/slub.c:294!
[596663.812950] invalid opcode: 0000 [#1] SMP PTI
[596663.812957] CPU: 13 PID: 1475935 Comm: rmmod Kdump: loaded Tainted: G IOE --------- - - 4.18.0-240.el8.x86_64 #1
[596663.812960] Hardware name: HP ProLiant DL380p Gen8, BIOS P70 08/20/2012
[596663.812974] RIP: 0010:__slab_free+0x17d/0x360
...
[596663.813008] Call Trace:
[596663.813022] ? __dentry_kill+0x121/0x170
[596663.813030] ? _cond_resched+0x15/0x30
[596663.813034] ? _cond_resched+0x15/0x30
[596663.813039] ? wait_for_completion+0x35/0x190
[596663.813048] ? try_to_wake_up+0x63/0x540
[596663.813055] free_task+0x5a/0x60
[596663.813061] kthread_stop+0xf3/0x100
[596663.813103] qla2x00_remove_one+0x284/0x440 [qla2xxx] |
In the Linux kernel, the following vulnerability has been resolved:
net: inet: do not leave a dangling sk pointer in inet_create()
sock_init_data() attaches the allocated sk object to the provided sock
object. If inet_create() fails later, the sk object is freed, but the
sock object retains the dangling pointer, which may create use-after-free
later.
Clear the sk pointer in the sock object on error. |
In the Linux kernel, the following vulnerability has been resolved:
net: inet6: do not leave a dangling sk pointer in inet6_create()
sock_init_data() attaches the allocated sk pointer to the provided sock
object. If inet6_create() fails later, the sk object is released, but the
sock object retains the dangling sk pointer, which may cause use-after-free
later.
Clear the sock sk pointer on error. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: amdkfd_free_gtt_mem clear the correct pointer
Pass pointer reference to amdgpu_bo_unref to clear the correct pointer,
otherwise amdgpu_bo_unref clear the local variable, the original pointer
not set to NULL, this could cause use-after-free bug. |
In the Linux kernel, the following vulnerability has been resolved:
NFSD: Limit the number of concurrent async COPY operations
Nothing appears to limit the number of concurrent async COPY
operations that clients can start. In addition, AFAICT each async
COPY can copy an unlimited number of 4MB chunks, so can run for a
long time. Thus IMO async COPY can become a DoS vector.
Add a restriction mechanism that bounds the number of concurrent
background COPY operations. Start simple and try to be fair -- this
patch implements a per-namespace limit.
An async COPY request that occurs while this limit is exceeded gets
NFS4ERR_DELAY. The requesting client can choose to send the request
again after a delay or fall back to a traditional read/write style
copy.
If there is need to make the mechanism more sophisticated, we can
visit that in future patches. |