CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u391, 8u391-perf, 11.0.21, 17.0.9, 21.0.1; Oracle GraalVM for JDK: 17.0.9, 21.0.1; Oracle GraalVM Enterprise Edition: 20.3.12, 21.3.8 and 22.3.4. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 5.9 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N). |
An issue in Ignite Realtime Openfire v.4.9.0 and before allows a remote attacker to escalate privileges via the admin.authorizedJIDs system property component. |
The OpenVPN GUI installer before version 2.6.9 did not set the proper access control restrictions to the installation directory of OpenVPN binaries when using a non-standard installation path, which allows an attacker to replace binaries to run arbitrary executables. |
The TD Bank TD Advanced Dashboard client through 3.0.3 for macOS allows arbitrary code execution because of the lack of electron::fuses::IsRunAsNodeEnabled (i.e., ELECTRON_RUN_AS_NODE can be used in production). This makes it easier for a compromised process to access banking information. |
Incorrect default permissions for the Intel(R) Support Android application before 21.07.40 may allow an authenticated user to potentially enable information disclosure via local access. |
Improper permissions for Intel(R) Quartus(R) Prime Pro Edition before version 21.3 may allow an authenticated user to potentially enable escalation of privilege via local access. |
Sensitive information accessible by physical probing of JTAG interface for some Intel(R) Processors with SGX may allow an unprivileged user to potentially enable information disclosure via physical access. |
Incorrect default permissions for the Intel(R) Connect M Android application before version 1.7.4 may allow an authenticated user to potentially enable information disclosure via local access. |
Incorrect default permissions for the Intel(R) RXT for Chromebook application, all versions, may allow an authenticated user to potentially enable information disclosure via local access. |
Incorrect default permissions in the software installer for the Intel(R) Advisor before version 2021.4.0 may allow an authenticated user to potentially enable escalation of privilege via local access. |
Incorrect default permissions in the firmware for some Intel(R) Processors may allow a privileged user to potentially enable a denial of service via local access. |
Incorrect Default Permissions vulnerability in Hitachi Infrastructure Analytics Advisor on Linux (Analytics probe component), Hitachi Ops Center Analyzer on Linux (Analyzer probe component), Hitachi Ops Center Viewpoint on Linux (Viewpoint RAID Agent component) allows local users to read and write specific files.
This issue affects Hitachi Infrastructure Analytics Advisor: from 2.0.0-00 through 4.4.0-00; Hitachi Ops Center Analyzer: from 10.0.0-00 before 10.9.0-00; Hitachi Ops Center Viewpoint: from 10.8.0-00 before 10.9.0-00.
|
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_rbtree: skip sync GC for new elements in this transaction
New elements in this transaction might expired before such transaction
ends. Skip sync GC for such elements otherwise commit path might walk
over an already released object. Once transaction is finished, async GC
will collect such expired element. |
In the Linux kernel, the following vulnerability has been resolved:
net: fix information leakage in /proc/net/ptype
In one net namespace, after creating a packet socket without binding
it to a device, users in other net namespaces can observe the new
`packet_type` added by this packet socket by reading `/proc/net/ptype`
file. This is minor information leakage as packet socket is
namespace aware.
Add a net pointer in `packet_type` to keep the net namespace of
of corresponding packet socket. In `ptype_seq_show`, this net pointer
must be checked when it is not NULL. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_ct: skip expectations for confirmed conntrack
nft_ct_expect_obj_eval() calls nf_ct_ext_add() for a confirmed
conntrack entry. However, nf_ct_ext_add() can only be called for
!nf_ct_is_confirmed().
[ 1825.349056] WARNING: CPU: 0 PID: 1279 at net/netfilter/nf_conntrack_extend.c:48 nf_ct_xt_add+0x18e/0x1a0 [nf_conntrack]
[ 1825.351391] RIP: 0010:nf_ct_ext_add+0x18e/0x1a0 [nf_conntrack]
[ 1825.351493] Code: 41 5c 41 5d 41 5e 41 5f c3 41 bc 0a 00 00 00 e9 15 ff ff ff ba 09 00 00 00 31 f6 4c 89 ff e8 69 6c 3d e9 eb 96 45 31 ed eb cd <0f> 0b e9 b1 fe ff ff e8 86 79 14 e9 eb bf 0f 1f 40 00 0f 1f 44 00
[ 1825.351721] RSP: 0018:ffffc90002e1f1e8 EFLAGS: 00010202
[ 1825.351790] RAX: 000000000000000e RBX: ffff88814f5783c0 RCX: ffffffffc0e4f887
[ 1825.351881] RDX: dffffc0000000000 RSI: 0000000000000008 RDI: ffff88814f578440
[ 1825.351971] RBP: 0000000000000000 R08: 0000000000000000 R09: ffff88814f578447
[ 1825.352060] R10: ffffed1029eaf088 R11: 0000000000000001 R12: ffff88814f578440
[ 1825.352150] R13: ffff8882053f3a00 R14: 0000000000000000 R15: 0000000000000a20
[ 1825.352240] FS: 00007f992261c900(0000) GS:ffff889faec00000(0000) knlGS:0000000000000000
[ 1825.352343] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1825.352417] CR2: 000056070a4d1158 CR3: 000000015efe0000 CR4: 0000000000350ee0
[ 1825.352508] Call Trace:
[ 1825.352544] nf_ct_helper_ext_add+0x10/0x60 [nf_conntrack]
[ 1825.352641] nft_ct_expect_obj_eval+0x1b8/0x1e0 [nft_ct]
[ 1825.352716] nft_do_chain+0x232/0x850 [nf_tables]
Add the ct helper extension only for unconfirmed conntrack. Skip rule
evaluation if the ct helper extension does not exist. Thus, you can
only create expectations from the first packet.
It should be possible to remove this limitation by adding a new action
to attach a generic ct helper to the first packet. Then, use this ct
helper extension from follow up packets to create the ct expectation.
While at it, add a missing check to skip the template conntrack too
and remove check for IPCT_UNTRACK which is implicit to !ct. |
In the Linux kernel, the following vulnerability has been resolved:
parisc: Clear stale IIR value on instruction access rights trap
When a trap 7 (Instruction access rights) occurs, this means the CPU
couldn't execute an instruction due to missing execute permissions on
the memory region. In this case it seems the CPU didn't even fetched
the instruction from memory and thus did not store it in the cr19 (IIR)
register before calling the trap handler. So, the trap handler will find
some random old stale value in cr19.
This patch simply overwrites the stale IIR value with a constant magic
"bad food" value (0xbaadf00d), in the hope people don't start to try to
understand the various random IIR values in trap 7 dumps. |
Microsoft Defender Security Feature Bypass Vulnerability |
"IBM Robotic Process Automation 21.0.1, 21.0.2, 21.0.3, 21.0.4, and 21.0.5 is vulnerable to incorrect permission assignment which could allow access to application configurations. IBM X-Force ID: 238679." |
An access control issue in the component formDMZ.cgi of D-Link 816A2_FWv1.10CNB05_R1B011D88210 allows unauthenticated attackers to set the DMZ service of the device via a crafted POST request. |
Jenkins 2.423 and earlier, LTS 2.414.1 and earlier creates a temporary file in the system temporary directory with the default permissions for newly created files when installing a plugin from a URL, potentially allowing attackers with access to the system temporary directory to replace the file before it is installed in Jenkins, potentially resulting in arbitrary code execution. |