| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ARM: Fix refcount leak in axxia_boot_secondary
of_find_compatible_node() returns a node pointer with refcount
incremented, we should use of_node_put() on it when done.
Add missing of_node_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/cm: Fix memory leak in ib_cm_insert_listen
cm_alloc_id_priv() allocates resource for the cm_id_priv. When
cm_init_listen() fails it doesn't free it, leading to memory leak.
Add the missing error unwind. |
| In the Linux kernel, the following vulnerability has been resolved:
usbnet: fix memory leak in error case
usbnet_write_cmd_async() mixed up which buffers
need to be freed in which error case.
v2: add Fixes tag
v3: fix uninitialized buf pointer |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: piix4: Fix a memory leak in the EFCH MMIO support
The recently added support for EFCH MMIO regions introduced a memory
leak in that code path. The leak is caused by the fact that
release_resource() merely removes the resource from the tree but does
not free its memory. We need to call release_mem_region() instead,
which does free the memory. As a nice side effect, this brings back
some symmetry between the legacy and MMIO paths. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing/histograms: Fix memory leak problem
This reverts commit 46bbe5c671e06f070428b9be142cc4ee5cedebac.
As commit 46bbe5c671e0 ("tracing: fix double free") said, the
"double free" problem reported by clang static analyzer is:
> In parse_var_defs() if there is a problem allocating
> var_defs.expr, the earlier var_defs.name is freed.
> This free is duplicated by free_var_defs() which frees
> the rest of the list.
However, if there is a problem allocating N-th var_defs.expr:
+ in parse_var_defs(), the freed 'earlier var_defs.name' is
actually the N-th var_defs.name;
+ then in free_var_defs(), the names from 0th to (N-1)-th are freed;
IF ALLOCATING PROBLEM HAPPENED HERE!!! -+
\
|
0th 1th (N-1)-th N-th V
+-------------+-------------+-----+-------------+-----------
var_defs: | name | expr | name | expr | ... | name | expr | name | ///
+-------------+-------------+-----+-------------+-----------
These two frees don't act on same name, so there was no "double free"
problem before. Conversely, after that commit, we get a "memory leak"
problem because the above "N-th var_defs.name" is not freed.
If enable CONFIG_DEBUG_KMEMLEAK and inject a fault at where the N-th
var_defs.expr allocated, then execute on shell like:
$ echo 'hist:key=call_site:val=$v1,$v2:v1=bytes_req,v2=bytes_alloc' > \
/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger
Then kmemleak reports:
unreferenced object 0xffff8fb100ef3518 (size 8):
comm "bash", pid 196, jiffies 4295681690 (age 28.538s)
hex dump (first 8 bytes):
76 31 00 00 b1 8f ff ff v1......
backtrace:
[<0000000038fe4895>] kstrdup+0x2d/0x60
[<00000000c99c049a>] event_hist_trigger_parse+0x206f/0x20e0
[<00000000ae70d2cc>] trigger_process_regex+0xc0/0x110
[<0000000066737a4c>] event_trigger_write+0x75/0xd0
[<000000007341e40c>] vfs_write+0xbb/0x2a0
[<0000000087fde4c2>] ksys_write+0x59/0xd0
[<00000000581e9cdf>] do_syscall_64+0x3a/0x80
[<00000000cf3b065c>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: fix a possible refcount leak in intel_dp_add_mst_connector()
If drm_connector_init fails, intel_connector_free will be called to take
care of proper free. So it is necessary to drop the refcount of port
before intel_connector_free.
(cherry picked from commit cea9ed611e85d36a05db52b6457bf584b7d969e2) |
| In the Linux kernel, the following vulnerability has been resolved:
net: tipc: fix possible refcount leak in tipc_sk_create()
Free sk in case tipc_sk_insert() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
net: sfp: fix memory leak in sfp_probe()
sfp_probe() allocates a memory chunk from sfp with sfp_alloc(). When
devm_add_action() fails, sfp is not freed, which leads to a memory leak.
We should use devm_add_action_or_reset() instead of devm_add_action(). |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: Fix handling of dummy receive descriptors
Fix memory leak caused by not handling dummy receive descriptor properly.
iavf_get_rx_buffer now sets the rx_buffer return value for dummy receive
descriptors. Without this patch, when the hardware writes a dummy
descriptor, iavf would not free the page allocated for the previous receive
buffer. This is an unlikely event but can still happen.
[Jesse: massaged commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: qat - fix memory leak in RSA
When an RSA key represented in form 2 (as defined in PKCS #1 V2.1) is
used, some components of the private key persist even after the TFM is
released.
Replace the explicit calls to free the buffers in qat_rsa_exit_tfm()
with a call to qat_rsa_clear_ctx() which frees all buffers referenced in
the TFM context. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/MCE/AMD: Fix memory leak when threshold_create_bank() fails
In mce_threshold_create_device(), if threshold_create_bank() fails, the
previously allocated threshold banks array @bp will be leaked because
the call to mce_threshold_remove_device() will not free it.
This happens because mce_threshold_remove_device() fetches the pointer
through the threshold_banks per-CPU variable but bp is written there
only after the bank creation is successful, and not before, when
threshold_create_bank() fails.
Add a helper which unwinds all the bank creation work previously done
and pass into it the previously allocated threshold banks array for
freeing.
[ bp: Massage. ] |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Protect memory leak for NPIV ports sending PLOGI_RJT
There is a potential memory leak in lpfc_ignore_els_cmpl() and
lpfc_els_rsp_reject() that was allocated from NPIV PLOGI_RJT
(lpfc_rcv_plogi()'s login_mbox).
Check if cmdiocb->context_un.mbox was allocated in lpfc_ignore_els_cmpl(),
and then free it back to phba->mbox_mem_pool along with mbox->ctx_buf for
service parameters.
For lpfc_els_rsp_reject() failure, free both the ctx_buf for service
parameters and the login_mbox. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: Fix missing of_node_put in mt2701_wm8960_machine_probe
This node pointer is returned by of_parse_phandle() with
refcount incremented in this function.
Calling of_node_put() to avoid the refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
media: rga: fix possible memory leak in rga_probe
rga->m2m_dev needs to be freed when rga_probe fails. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: pfuze100: Fix refcount leak in pfuze_parse_regulators_dt
of_node_get() returns a node with refcount incremented.
Calling of_node_put() to drop the reference when not needed anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: ti: j721e-evm: Fix refcount leak in j721e_soc_probe_*
of_parse_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not needed anymore.
Add missing of_node_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal/core: Fix memory leak in __thermal_cooling_device_register()
I got memory leak as follows when doing fault injection test:
unreferenced object 0xffff888010080000 (size 264312):
comm "182", pid 102533, jiffies 4296434960 (age 10.100s)
hex dump (first 32 bytes):
00 00 00 00 ad 4e ad de ff ff ff ff 00 00 00 00 .....N..........
ff ff ff ff ff ff ff ff 40 7f 1f b9 ff ff ff ff ........@.......
backtrace:
[<0000000038b2f4fc>] kmalloc_order_trace+0x1d/0x110 mm/slab_common.c:969
[<00000000ebcb8da5>] __kmalloc+0x373/0x420 include/linux/slab.h:510
[<0000000084137f13>] thermal_cooling_device_setup_sysfs+0x15d/0x2d0 include/linux/slab.h:586
[<00000000352b8755>] __thermal_cooling_device_register+0x332/0xa60 drivers/thermal/thermal_core.c:927
[<00000000fb9f331b>] devm_thermal_of_cooling_device_register+0x6b/0xf0 drivers/thermal/thermal_core.c:1041
[<000000009b8012d2>] max6650_probe.cold+0x557/0x6aa drivers/hwmon/max6650.c:211
[<00000000da0b7e04>] i2c_device_probe+0x472/0xac0 drivers/i2c/i2c-core-base.c:561
If device_register() fails, thermal_cooling_device_destroy_sysfs() need be called
to free the memory allocated in thermal_cooling_device_setup_sysfs(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm: msm: fix possible memory leak in mdp5_crtc_cursor_set()
drm_gem_object_lookup will call drm_gem_object_get inside. So cursor_bo
needs to be put when msm_gem_get_and_pin_iova fails. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: scmi: Fix refcount leak in scmi_regulator_probe
of_find_node_by_name() returns a node pointer with refcount
incremented, we should use of_node_put() on it when done.
Add missing of_node_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/a6xx: Fix refcount leak in a6xx_gpu_init
of_parse_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
a6xx_gmu_init() passes the node to of_find_device_by_node()
and of_dma_configure(), of_find_device_by_node() will takes its
reference, of_dma_configure() doesn't need the node after usage.
Add missing of_node_put() to avoid refcount leak. |