Filtered by NVD-CWE-noinfo
Total 28533 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-27845 1 Apple 2 Ipados, Iphone Os 2024-08-02 3.3 Low
A privacy issue was addressed with improved handling of temporary files. This issue is fixed in iOS 17.5 and iPadOS 17.5. An app may be able to access Notes attachments.
CVE-2024-27820 1 Apple 7 Ipados, Iphone Os, Macos and 4 more 2024-08-02 8.8 High
The issue was addressed with improved memory handling. This issue is fixed in tvOS 17.5, iOS 16.7.8 and iPadOS 16.7.8, visionOS 1.2, Safari 17.5, iOS 17.5 and iPadOS 17.5, watchOS 10.5, macOS Sonoma 14.5. Processing web content may lead to arbitrary code execution.
CVE-2024-27844 1 Apple 3 Macos, Safari, Visionos 2024-08-02 9.1 Critical
The issue was addressed with improved checks. This issue is fixed in visionOS 1.2, macOS Sonoma 14.5, Safari 17.5. A website's permission dialog may persist after navigation away from the site.
CVE-2024-27830 1 Apple 7 Ipados, Iphone Os, Macos and 4 more 2024-08-02 6.5 Medium
This issue was addressed through improved state management. This issue is fixed in tvOS 17.5, visionOS 1.2, Safari 17.5, iOS 17.5 and iPadOS 17.5, watchOS 10.5, macOS Sonoma 14.5. A maliciously crafted webpage may be able to fingerprint the user.
CVE-2024-27811 1 Apple 6 Ipados, Iphone Os, Macos and 3 more 2024-08-02 7.8 High
The issue was addressed with improved checks. This issue is fixed in tvOS 17.5, visionOS 1.2, iOS 17.5 and iPadOS 17.5, watchOS 10.5, macOS Sonoma 14.5. An app may be able to elevate privileges.
CVE-2024-27814 1 Apple 1 Watchos 2024-08-02 2.4 Low
This issue was addressed through improved state management. This issue is fixed in watchOS 10.5. A person with physical access to a device may be able to view contact information from the lock screen.
CVE-2024-27817 1 Apple 5 Ipados, Iphone Os, Macos and 2 more 2024-08-02 7.8 High
The issue was addressed with improved checks. This issue is fixed in macOS Ventura 13.6.7, macOS Monterey 12.7.5, iOS 16.7.8 and iPadOS 16.7.8, tvOS 17.5, visionOS 1.2, iOS 17.5 and iPadOS 17.5, macOS Sonoma 14.5. An app may be able to execute arbitrary code with kernel privileges.
CVE-2024-27850 1 Apple 5 Ipados, Iphone Os, Macos and 2 more 2024-08-02 6.5 Medium
This issue was addressed with improvements to the noise injection algorithm. This issue is fixed in visionOS 1.2, macOS Sonoma 14.5, Safari 17.5, iOS 17.5 and iPadOS 17.5. A maliciously crafted webpage may be able to fingerprint the user.
CVE-2024-27800 1 Apple 8 Ios, Ipad Os, Ipados and 5 more 2024-08-02 7.1 High
This issue was addressed by removing the vulnerable code. This issue is fixed in macOS Ventura 13.6.7, macOS Monterey 12.7.5, iOS 16.7.8 and iPadOS 16.7.8, tvOS 17.5, visionOS 1.2, iOS 17.5 and iPadOS 17.5, watchOS 10.5, macOS Sonoma 14.5. Processing a maliciously crafted message may lead to a denial-of-service.
CVE-2024-27819 1 Apple 2 Ipados, Iphone Os 2024-08-02 2.4 Low
The issue was addressed by restricting options offered on a locked device. This issue is fixed in iOS 17.5 and iPadOS 17.5. An attacker with physical access may be able to access contacts from the lock screen.
CVE-2024-27836 1 Apple 4 Ipados, Iphone Os, Macos and 1 more 2024-08-02 7.8 High
The issue was addressed with improved checks. This issue is fixed in visionOS 1.2, macOS Sonoma 14.5, iOS 17.5 and iPadOS 17.5. Processing a maliciously crafted image may lead to arbitrary code execution.
CVE-2024-27799 1 Apple 3 Ipados, Iphone Os, Macos 2024-08-02 3.3 Low
This issue was addressed with additional entitlement checks. This issue is fixed in macOS Sonoma 14.5, macOS Ventura 13.6.7, macOS Monterey 12.7.5, iOS 16.7.8 and iPadOS 16.7.8. An unprivileged app may be able to log keystrokes in other apps including those using secure input mode.
CVE-2024-27808 1 Apple 7 Ipados, Iphone Os, Macos and 4 more 2024-08-02 8.8 High
The issue was addressed with improved memory handling. This issue is fixed in tvOS 17.5, visionOS 1.2, Safari 17.5, iOS 17.5 and iPadOS 17.5, watchOS 10.5, macOS Sonoma 14.5. Processing web content may lead to arbitrary code execution.
CVE-2024-27792 1 Apple 1 Macos 2024-08-02 5.5 Medium
This issue was addressed by adding an additional prompt for user consent. This issue is fixed in macOS Sonoma 14.4. An app may be able to access user-sensitive data.
CVE-2024-27017 2 Fedoraproject, Linux 2 Fedora, Linux Kernel 2024-08-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_set_pipapo: walk over current view on netlink dump The generation mask can be updated while netlink dump is in progress. The pipapo set backend walk iterator cannot rely on it to infer what view of the datastructure is to be used. Add notation to specify if user wants to read/update the set. Based on patch from Florian Westphal.
CVE-2024-27016 3 Fedoraproject, Linux, Redhat 4 Fedora, Linux Kernel, Enterprise Linux and 1 more 2024-08-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: flowtable: validate pppoe header Ensure there is sufficient room to access the protocol field of the PPPoe header. Validate it once before the flowtable lookup, then use a helper function to access protocol field.
CVE-2024-27018 2 Fedoraproject, Linux 2 Fedora, Linux Kernel 2024-08-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: br_netfilter: skip conntrack input hook for promisc packets For historical reasons, when bridge device is in promisc mode, packets that are directed to the taps follow bridge input hook path. This patch adds a workaround to reset conntrack for these packets. Jianbo Liu reports warning splats in their test infrastructure where cloned packets reach the br_netfilter input hook to confirm the conntrack object. Scratch one bit from BR_INPUT_SKB_CB to annotate that this packet has reached the input hook because it is passed up to the bridge device to reach the taps. [ 57.571874] WARNING: CPU: 1 PID: 0 at net/bridge/br_netfilter_hooks.c:616 br_nf_local_in+0x157/0x180 [br_netfilter] [ 57.572749] Modules linked in: xt_MASQUERADE nf_conntrack_netlink nfnetlink iptable_nat xt_addrtype xt_conntrack nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_isc si ib_umad rdma_cm ib_ipoib iw_cm ib_cm mlx5_ib ib_uverbs ib_core mlx5ctl mlx5_core [ 57.575158] CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.8.0+ #19 [ 57.575700] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 57.576662] RIP: 0010:br_nf_local_in+0x157/0x180 [br_netfilter] [ 57.577195] Code: fe ff ff 41 bd 04 00 00 00 be 04 00 00 00 e9 4a ff ff ff be 04 00 00 00 48 89 ef e8 f3 a9 3c e1 66 83 ad b4 00 00 00 04 eb 91 <0f> 0b e9 f1 fe ff ff 0f 0b e9 df fe ff ff 48 89 df e8 b3 53 47 e1 [ 57.578722] RSP: 0018:ffff88885f845a08 EFLAGS: 00010202 [ 57.579207] RAX: 0000000000000002 RBX: ffff88812dfe8000 RCX: 0000000000000000 [ 57.579830] RDX: ffff88885f845a60 RSI: ffff8881022dc300 RDI: 0000000000000000 [ 57.580454] RBP: ffff88885f845a60 R08: 0000000000000001 R09: 0000000000000003 [ 57.581076] R10: 00000000ffff1300 R11: 0000000000000002 R12: 0000000000000000 [ 57.581695] R13: ffff8881047ffe00 R14: ffff888108dbee00 R15: ffff88814519b800 [ 57.582313] FS: 0000000000000000(0000) GS:ffff88885f840000(0000) knlGS:0000000000000000 [ 57.583040] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 57.583564] CR2: 000000c4206aa000 CR3: 0000000103847001 CR4: 0000000000370eb0 [ 57.584194] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 57.584820] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 57.585440] Call Trace: [ 57.585721] <IRQ> [ 57.585976] ? __warn+0x7d/0x130 [ 57.586323] ? br_nf_local_in+0x157/0x180 [br_netfilter] [ 57.586811] ? report_bug+0xf1/0x1c0 [ 57.587177] ? handle_bug+0x3f/0x70 [ 57.587539] ? exc_invalid_op+0x13/0x60 [ 57.587929] ? asm_exc_invalid_op+0x16/0x20 [ 57.588336] ? br_nf_local_in+0x157/0x180 [br_netfilter] [ 57.588825] nf_hook_slow+0x3d/0xd0 [ 57.589188] ? br_handle_vlan+0x4b/0x110 [ 57.589579] br_pass_frame_up+0xfc/0x150 [ 57.589970] ? br_port_flags_change+0x40/0x40 [ 57.590396] br_handle_frame_finish+0x346/0x5e0 [ 57.590837] ? ipt_do_table+0x32e/0x430 [ 57.591221] ? br_handle_local_finish+0x20/0x20 [ 57.591656] br_nf_hook_thresh+0x4b/0xf0 [br_netfilter] [ 57.592286] ? br_handle_local_finish+0x20/0x20 [ 57.592802] br_nf_pre_routing_finish+0x178/0x480 [br_netfilter] [ 57.593348] ? br_handle_local_finish+0x20/0x20 [ 57.593782] ? nf_nat_ipv4_pre_routing+0x25/0x60 [nf_nat] [ 57.594279] br_nf_pre_routing+0x24c/0x550 [br_netfilter] [ 57.594780] ? br_nf_hook_thresh+0xf0/0xf0 [br_netfilter] [ 57.595280] br_handle_frame+0x1f3/0x3d0 [ 57.595676] ? br_handle_local_finish+0x20/0x20 [ 57.596118] ? br_handle_frame_finish+0x5e0/0x5e0 [ 57.596566] __netif_receive_skb_core+0x25b/0xfc0 [ 57.597017] ? __napi_build_skb+0x37/0x40 [ 57.597418] __netif_receive_skb_list_core+0xfb/0x220
CVE-2024-27015 2 Fedoraproject, Linux 2 Fedora, Linux Kernel 2024-08-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: flowtable: incorrect pppoe tuple pppoe traffic reaching ingress path does not match the flowtable entry because the pppoe header is expected to be at the network header offset. This bug causes a mismatch in the flow table lookup, so pppoe packets enter the classical forwarding path.
CVE-2024-26882 1 Linux 1 Linux Kernel 2024-08-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net: ip_tunnel: make sure to pull inner header in ip_tunnel_rcv() Apply the same fix than ones found in : 8d975c15c0cd ("ip6_tunnel: make sure to pull inner header in __ip6_tnl_rcv()") 1ca1ba465e55 ("geneve: make sure to pull inner header in geneve_rx()") We have to save skb->network_header in a temporary variable in order to be able to recompute the network_header pointer after a pskb_inet_may_pull() call. pskb_inet_may_pull() makes sure the needed headers are in skb->head. syzbot reported: BUG: KMSAN: uninit-value in __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] BUG: KMSAN: uninit-value in INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] BUG: KMSAN: uninit-value in IP_ECN_decapsulate include/net/inet_ecn.h:302 [inline] BUG: KMSAN: uninit-value in ip_tunnel_rcv+0xed9/0x2ed0 net/ipv4/ip_tunnel.c:409 __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] IP_ECN_decapsulate include/net/inet_ecn.h:302 [inline] ip_tunnel_rcv+0xed9/0x2ed0 net/ipv4/ip_tunnel.c:409 __ipgre_rcv+0x9bc/0xbc0 net/ipv4/ip_gre.c:389 ipgre_rcv net/ipv4/ip_gre.c:411 [inline] gre_rcv+0x423/0x19f0 net/ipv4/ip_gre.c:447 gre_rcv+0x2a4/0x390 net/ipv4/gre_demux.c:163 ip_protocol_deliver_rcu+0x264/0x1300 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x2b8/0x440 net/ipv4/ip_input.c:233 NF_HOOK include/linux/netfilter.h:314 [inline] ip_local_deliver+0x21f/0x490 net/ipv4/ip_input.c:254 dst_input include/net/dst.h:461 [inline] ip_rcv_finish net/ipv4/ip_input.c:449 [inline] NF_HOOK include/linux/netfilter.h:314 [inline] ip_rcv+0x46f/0x760 net/ipv4/ip_input.c:569 __netif_receive_skb_one_core net/core/dev.c:5534 [inline] __netif_receive_skb+0x1a6/0x5a0 net/core/dev.c:5648 netif_receive_skb_internal net/core/dev.c:5734 [inline] netif_receive_skb+0x58/0x660 net/core/dev.c:5793 tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1556 tun_get_user+0x53b9/0x66e0 drivers/net/tun.c:2009 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2055 call_write_iter include/linux/fs.h:2087 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb6b/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xd0 fs/read_write.c:652 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Uninit was created at: __alloc_pages+0x9a6/0xe00 mm/page_alloc.c:4590 alloc_pages_mpol+0x62b/0x9d0 mm/mempolicy.c:2133 alloc_pages+0x1be/0x1e0 mm/mempolicy.c:2204 skb_page_frag_refill+0x2bf/0x7c0 net/core/sock.c:2909 tun_build_skb drivers/net/tun.c:1686 [inline] tun_get_user+0xe0a/0x66e0 drivers/net/tun.c:1826 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2055 call_write_iter include/linux/fs.h:2087 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb6b/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xd0 fs/read_write.c:652 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b
CVE-2024-26596 1 Linux 1 Linux Kernel 2024-08-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: dsa: fix netdev_priv() dereference before check on non-DSA netdevice events After the blamed commit, we started doing this dereference for every NETDEV_CHANGEUPPER and NETDEV_PRECHANGEUPPER event in the system. static inline struct dsa_port *dsa_user_to_port(const struct net_device *dev) { struct dsa_user_priv *p = netdev_priv(dev); return p->dp; } Which is obviously bogus, because not all net_devices have a netdev_priv() of type struct dsa_user_priv. But struct dsa_user_priv is fairly small, and p->dp means dereferencing 8 bytes starting with offset 16. Most drivers allocate that much private memory anyway, making our access not fault, and we discard the bogus data quickly afterwards, so this wasn't caught. But the dummy interface is somewhat special in that it calls alloc_netdev() with a priv size of 0. So every netdev_priv() dereference is invalid, and we get this when we emit a NETDEV_PRECHANGEUPPER event with a VLAN as its new upper: $ ip link add dummy1 type dummy $ ip link add link dummy1 name dummy1.100 type vlan id 100 [ 43.309174] ================================================================== [ 43.316456] BUG: KASAN: slab-out-of-bounds in dsa_user_prechangeupper+0x30/0xe8 [ 43.323835] Read of size 8 at addr ffff3f86481d2990 by task ip/374 [ 43.330058] [ 43.342436] Call trace: [ 43.366542] dsa_user_prechangeupper+0x30/0xe8 [ 43.371024] dsa_user_netdevice_event+0xb38/0xee8 [ 43.375768] notifier_call_chain+0xa4/0x210 [ 43.379985] raw_notifier_call_chain+0x24/0x38 [ 43.384464] __netdev_upper_dev_link+0x3ec/0x5d8 [ 43.389120] netdev_upper_dev_link+0x70/0xa8 [ 43.393424] register_vlan_dev+0x1bc/0x310 [ 43.397554] vlan_newlink+0x210/0x248 [ 43.401247] rtnl_newlink+0x9fc/0xe30 [ 43.404942] rtnetlink_rcv_msg+0x378/0x580 Avoid the kernel oops by dereferencing after the type check, as customary.