CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In SAEMM_DiscloseMsId of SAEMM_RadioMessageCodec.c, there is a possible out of bounds read due to a missing bounds check. This could lead to remote information disclosure post authentication with no additional execution privileges needed. User interaction is not needed for exploitation. |
A request smuggling vulnerability existed in the Google Cloud Classic Application Load Balancer due to improper handling of chunked-encoded HTTP requests. This allowed attackers to craft requests that could be misinterpreted by backend servers. The issue was fixed by disallowing stray data after a chunk, and is no longer exploitable. No action is required as Classic Application Load Balancer service after 2025-04-26 is not vulnerable. |
Google gVisor's runsc component exhibited a local privilege escalation vulnerability due to incorrect handling of file access permissions, which allowed unprivileged users to access restricted files. This occurred because the process initially ran with root-like permissions until the first fork. |
A directory traversal issue in Swetrix Web Analytics API 3.1.1 before 7d8b972 allows a remote attacker to achieve Remote Code Execution via a crafted HTTP request. |
fast-redact is a package that provides do very fast object redaction. A Prototype Pollution vulnerability in the nestedRestore function of fast-redact version 3.5.0 and before allows attackers to inject properties on Object.prototype via supplying a crafted payload, causing denial of service (DoS) as the minimum consequence. NOTE: the Supplier disputes this because the reporter only demonstrated access to properties by an internal utility function, and there is no means for achieving prototype pollution via the public API. |
A vulnerability in the IPv6 Router Advertisement (RA) packet processing of Cisco Access Point Software could allow an unauthenticated, adjacent attacker to modify the IPv6 gateway on an affected device.
This vulnerability is due to a logic error in the processing of IPv6 RA packets that are received from wireless clients. An attacker could exploit this vulnerability by associating to a wireless network and sending a series of crafted IPv6 RA packets. A successful exploit could allow the attacker to temporarily change the IPv6 gateway of an affected device. This could also lead to intermittent packet loss for any wireless clients that are associated with the affected device. |
Any project that parses untrusted Protocol Buffers data containing an arbitrary number of nested groups / series of SGROUP tags can corrupted by exceeding the stack limit i.e. StackOverflow. Parsing nested groups as unknown fields with DiscardUnknownFieldsParser or Java Protobuf Lite parser, or against Protobuf map fields, creates unbounded recursions that can be abused by an attacker. |
In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: llcc: Handle a second device without data corruption
Usually there is only one llcc device. But if there were a second, even
a failed probe call would modify the global drv_data pointer. So check
if drv_data is valid before overwriting it. |
In the Linux kernel, the following vulnerability has been resolved:
x86/tdx: Zero out the missing RSI in TDX_HYPERCALL macro
In the TDX_HYPERCALL asm, after the TDCALL instruction returns from the
untrusted VMM, the registers that the TDX guest shares to the VMM need
to be cleared to avoid speculative execution of VMM-provided values.
RSI is specified in the bitmap of those registers, but it is missing
when zeroing out those registers in the current TDX_HYPERCALL.
It was there when it was originally added in commit 752d13305c78
("x86/tdx: Expand __tdx_hypercall() to handle more arguments"), but was
later removed in commit 1e70c680375a ("x86/tdx: Do not corrupt
frame-pointer in __tdx_hypercall()"), which was correct because %rsi is
later restored in the "pop %rsi". However a later commit 7a3a401874be
("x86/tdx: Drop flags from __tdx_hypercall()") removed that "pop %rsi"
but forgot to add the "xor %rsi, %rsi" back.
Fix by adding it back. |
In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau: keep DMA buffers required for suspend/resume
Nouveau deallocates a few buffers post GPU init which are required for GPU suspend/resume to function correctly.
This is likely not as big an issue on systems where the NVGPU is the only GPU, but on multi-GPU set ups it leads to a regression where the kernel module errors and results in a system-wide rendering freeze.
This commit addresses that regression by moving the two buffers required for suspend and resume to be deallocated at driver unload instead of post init. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: bridge: confirm multicast packets before passing them up the stack
conntrack nf_confirm logic cannot handle cloned skbs referencing
the same nf_conn entry, which will happen for multicast (broadcast)
frames on bridges.
Example:
macvlan0
|
br0
/ \
ethX ethY
ethX (or Y) receives a L2 multicast or broadcast packet containing
an IP packet, flow is not yet in conntrack table.
1. skb passes through bridge and fake-ip (br_netfilter)Prerouting.
-> skb->_nfct now references a unconfirmed entry
2. skb is broad/mcast packet. bridge now passes clones out on each bridge
interface.
3. skb gets passed up the stack.
4. In macvlan case, macvlan driver retains clone(s) of the mcast skb
and schedules a work queue to send them out on the lower devices.
The clone skb->_nfct is not a copy, it is the same entry as the
original skb. The macvlan rx handler then returns RX_HANDLER_PASS.
5. Normal conntrack hooks (in NF_INET_LOCAL_IN) confirm the orig skb.
The Macvlan broadcast worker and normal confirm path will race.
This race will not happen if step 2 already confirmed a clone. In that
case later steps perform skb_clone() with skb->_nfct already confirmed (in
hash table). This works fine.
But such confirmation won't happen when eb/ip/nftables rules dropped the
packets before they reached the nf_confirm step in postrouting.
Pablo points out that nf_conntrack_bridge doesn't allow use of stateful
nat, so we can safely discard the nf_conn entry and let inet call
conntrack again.
This doesn't work for bridge netfilter: skb could have a nat
transformation. Also bridge nf prevents re-invocation of inet prerouting
via 'sabotage_in' hook.
Work around this problem by explicit confirmation of the entry at LOCAL_IN
time, before upper layer has a chance to clone the unconfirmed entry.
The downside is that this disables NAT and conntrack helpers.
Alternative fix would be to add locking to all code parts that deal with
unconfirmed packets, but even if that could be done in a sane way this
opens up other problems, for example:
-m physdev --physdev-out eth0 -j SNAT --snat-to 1.2.3.4
-m physdev --physdev-out eth1 -j SNAT --snat-to 1.2.3.5
For multicast case, only one of such conflicting mappings will be
created, conntrack only handles 1:1 NAT mappings.
Users should set create a setup that explicitly marks such traffic
NOTRACK (conntrack bypass) to avoid this, but we cannot auto-bypass
them, ruleset might have accept rules for untracked traffic already,
so user-visible behaviour would change. |
In https://github.com/google/nftables IP addresses were encoded in the wrong byte order, resulting in an nftables configuration which does not work as intended (might block or not block the desired addresses).
This issue affects: https://pkg.go.dev/github.com/google/nftables@v0.1.0
The bug was fixed in the next released version: https://pkg.go.dev/github.com/google/nftables@v0.2.0 |
Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Wikimedia Foundation Mediawiki - MintyDocs Extension allows Stored XSS.This issue affects Mediawiki - MintyDocs Extension: from 1.43.X before 1.43.2. |
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in PickPlugins Job Board Manager allows DOM-Based XSS. This issue affects Job Board Manager: from n/a through 2.1.61. |
In the Linux kernel, the following vulnerability has been resolved:
i2c: core: Run atomic i2c xfer when !preemptible
Since bae1d3a05a8b, i2c transfers are non-atomic if preemption is
disabled. However, non-atomic i2c transfers require preemption (e.g. in
wait_for_completion() while waiting for the DMA).
panic() calls preempt_disable_notrace() before calling
emergency_restart(). Therefore, if an i2c device is used for the
restart, the xfer should be atomic. This avoids warnings like:
[ 12.667612] WARNING: CPU: 1 PID: 1 at kernel/rcu/tree_plugin.h:318 rcu_note_context_switch+0x33c/0x6b0
[ 12.676926] Voluntary context switch within RCU read-side critical section!
...
[ 12.742376] schedule_timeout from wait_for_completion_timeout+0x90/0x114
[ 12.749179] wait_for_completion_timeout from tegra_i2c_wait_completion+0x40/0x70
...
[ 12.994527] atomic_notifier_call_chain from machine_restart+0x34/0x58
[ 13.001050] machine_restart from panic+0x2a8/0x32c
Use !preemptible() instead, which is basically the same check as
pre-v5.2. |
Cross-Site Request Forgery (CSRF) vulnerability in Joovii Sendle Shipping allows Cross Site Request Forgery. This issue affects Sendle Shipping: from n/a through 6.02. |
In the Linux kernel, the following vulnerability has been resolved:
drivers: perf: Check find_first_bit() return value
We must check the return value of find_first_bit() before using the
return value as an index array since it happens to overflow the array
and then panic:
[ 107.318430] Kernel BUG [#1]
[ 107.319434] CPU: 3 PID: 1238 Comm: kill Tainted: G E 6.6.0-rc6ubuntu-defconfig #2
[ 107.319465] Hardware name: riscv-virtio,qemu (DT)
[ 107.319551] epc : pmu_sbi_ovf_handler+0x3a4/0x3ae
[ 107.319840] ra : pmu_sbi_ovf_handler+0x52/0x3ae
[ 107.319868] epc : ffffffff80a0a77c ra : ffffffff80a0a42a sp : ffffaf83fecda350
[ 107.319884] gp : ffffffff823961a8 tp : ffffaf8083db1dc0 t0 : ffffaf83fecda480
[ 107.319899] t1 : ffffffff80cafe62 t2 : 000000000000ff00 s0 : ffffaf83fecda520
[ 107.319921] s1 : ffffaf83fecda380 a0 : 00000018fca29df0 a1 : ffffffffffffffff
[ 107.319936] a2 : 0000000001073734 a3 : 0000000000000004 a4 : 0000000000000000
[ 107.319951] a5 : 0000000000000040 a6 : 000000001d1c8774 a7 : 0000000000504d55
[ 107.319965] s2 : ffffffff82451f10 s3 : ffffffff82724e70 s4 : 000000000000003f
[ 107.319980] s5 : 0000000000000011 s6 : ffffaf8083db27c0 s7 : 0000000000000000
[ 107.319995] s8 : 0000000000000001 s9 : 00007fffb45d6558 s10: 00007fffb45d81a0
[ 107.320009] s11: ffffaf7ffff60000 t3 : 0000000000000004 t4 : 0000000000000000
[ 107.320023] t5 : ffffaf7f80000000 t6 : ffffaf8000000000
[ 107.320037] status: 0000000200000100 badaddr: 0000000000000000 cause: 0000000000000003
[ 107.320081] [<ffffffff80a0a77c>] pmu_sbi_ovf_handler+0x3a4/0x3ae
[ 107.320112] [<ffffffff800b42d0>] handle_percpu_devid_irq+0x9e/0x1a0
[ 107.320131] [<ffffffff800ad92c>] generic_handle_domain_irq+0x28/0x36
[ 107.320148] [<ffffffff8065f9f8>] riscv_intc_irq+0x36/0x4e
[ 107.320166] [<ffffffff80caf4a0>] handle_riscv_irq+0x54/0x86
[ 107.320189] [<ffffffff80cb0036>] do_irq+0x64/0x96
[ 107.320271] Code: 85a6 855e b097 ff7f 80e7 9220 b709 9002 4501 bbd9 (9002) 6097
[ 107.320585] ---[ end trace 0000000000000000 ]---
[ 107.320704] Kernel panic - not syncing: Fatal exception in interrupt
[ 107.320775] SMP: stopping secondary CPUs
[ 107.321219] Kernel Offset: 0x0 from 0xffffffff80000000
[ 107.333051] ---[ end Kernel panic - not syncing: Fatal exception in interrupt ]--- |
Insertion of Sensitive Information Into Sent Data vulnerability in thetechtribe The Tribal allows Retrieve Embedded Sensitive Data. This issue affects The Tribal: from n/a through 1.3.3. |
In the Linux kernel, the following vulnerability has been resolved:
crypto: pcrypt - Fix hungtask for PADATA_RESET
We found a hungtask bug in test_aead_vec_cfg as follows:
INFO: task cryptomgr_test:391009 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
Call trace:
__switch_to+0x98/0xe0
__schedule+0x6c4/0xf40
schedule+0xd8/0x1b4
schedule_timeout+0x474/0x560
wait_for_common+0x368/0x4e0
wait_for_completion+0x20/0x30
wait_for_completion+0x20/0x30
test_aead_vec_cfg+0xab4/0xd50
test_aead+0x144/0x1f0
alg_test_aead+0xd8/0x1e0
alg_test+0x634/0x890
cryptomgr_test+0x40/0x70
kthread+0x1e0/0x220
ret_from_fork+0x10/0x18
Kernel panic - not syncing: hung_task: blocked tasks
For padata_do_parallel, when the return err is 0 or -EBUSY, it will call
wait_for_completion(&wait->completion) in test_aead_vec_cfg. In normal
case, aead_request_complete() will be called in pcrypt_aead_serial and the
return err is 0 for padata_do_parallel. But, when pinst->flags is
PADATA_RESET, the return err is -EBUSY for padata_do_parallel, and it
won't call aead_request_complete(). Therefore, test_aead_vec_cfg will
hung at wait_for_completion(&wait->completion), which will cause
hungtask.
The problem comes as following:
(padata_do_parallel) |
rcu_read_lock_bh(); |
err = -EINVAL; | (padata_replace)
| pinst->flags |= PADATA_RESET;
err = -EBUSY |
if (pinst->flags & PADATA_RESET) |
rcu_read_unlock_bh() |
return err
In order to resolve the problem, we replace the return err -EBUSY with
-EAGAIN, which means parallel_data is changing, and the caller should call
it again.
v3:
remove retry and just change the return err.
v2:
introduce padata_try_do_parallel() in pcrypt_aead_encrypt and
pcrypt_aead_decrypt to solve the hungtask. |
Missing Authorization vulnerability in netgsm Netgsm allows Exploiting Incorrectly Configured Access Control Security Levels. This issue affects Netgsm: from n/a through 2.9.58. |