CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Bridge versions 14.1.8, 15.1.1 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could lead to memory exposure. An attacker could leverage this vulnerability to disclose sensitive information stored in memory. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
In the Linux kernel, the following vulnerability has been resolved:
octeontx2-pf: Fix potential use after free in otx2_tc_add_flow()
This code calls kfree_rcu(new_node, rcu) and then dereferences "new_node"
and then dereferences it on the next line. Two lines later, we take
a mutex so I don't think this is an RCU safe region. Re-order it to do
the dereferences before queuing up the free. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: Fix UAF in hci_conn_tx_dequeue
This fixes the following UAF caused by not properly locking hdev when
processing HCI_EV_NUM_COMP_PKTS:
BUG: KASAN: slab-use-after-free in hci_conn_tx_dequeue+0x1be/0x220 net/bluetooth/hci_conn.c:3036
Read of size 4 at addr ffff8880740f0940 by task kworker/u11:0/54
CPU: 1 UID: 0 PID: 54 Comm: kworker/u11:0 Not tainted 6.16.0-rc7 #3 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
Workqueue: hci1 hci_rx_work
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x230 mm/kasan/report.c:480
kasan_report+0x118/0x150 mm/kasan/report.c:593
hci_conn_tx_dequeue+0x1be/0x220 net/bluetooth/hci_conn.c:3036
hci_num_comp_pkts_evt+0x1c8/0xa50 net/bluetooth/hci_event.c:4404
hci_event_func net/bluetooth/hci_event.c:7477 [inline]
hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531
hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
process_one_work kernel/workqueue.c:3238 [inline]
process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
kthread+0x70e/0x8a0 kernel/kthread.c:464
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245
</TASK>
Allocated by task 54:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1039 [inline]
__hci_conn_add+0x233/0x1b30 net/bluetooth/hci_conn.c:939
le_conn_complete_evt+0x3d6/0x1220 net/bluetooth/hci_event.c:5628
hci_le_enh_conn_complete_evt+0x189/0x470 net/bluetooth/hci_event.c:5794
hci_event_func net/bluetooth/hci_event.c:7474 [inline]
hci_event_packet+0x78c/0x1200 net/bluetooth/hci_event.c:7531
hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
process_one_work kernel/workqueue.c:3238 [inline]
process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
kthread+0x70e/0x8a0 kernel/kthread.c:464
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245
Freed by task 9572:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x62/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2381 [inline]
slab_free mm/slub.c:4643 [inline]
kfree+0x18e/0x440 mm/slub.c:4842
device_release+0x9c/0x1c0
kobject_cleanup lib/kobject.c:689 [inline]
kobject_release lib/kobject.c:720 [inline]
kref_put include/linux/kref.h:65 [inline]
kobject_put+0x22b/0x480 lib/kobject.c:737
hci_conn_cleanup net/bluetooth/hci_conn.c:175 [inline]
hci_conn_del+0x8ff/0xcb0 net/bluetooth/hci_conn.c:1173
hci_abort_conn_sync+0x5d1/0xdf0 net/bluetooth/hci_sync.c:5689
hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332
process_one_work kernel/workqueue.c:3238 [inline]
process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
kthread+0x70e/0x8a0 kernel/kthread.c:464
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245 |
RemoteCall Remote Support Program (for Operator) versions prior to 5.1.0 contain an uncontrolled search path element vulnerability. If a crafted DLL is placed in the same folder with the affected product, it may cause an arbitrary code execution. |
NVIDIA Jetson Linux and IGX OS contain a vulnerability in NvMap, where improper tracking of memory allocations could allow a local attacker to cause memory overallocation. A successful exploitation of this vulnerability might lead to denial of service. |
Adobe Framemaker versions 2020.9, 2022.7 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
Adobe Commerce versions 2.4.9-alpha2, 2.4.8-p2, 2.4.7-p7, 2.4.6-p12, 2.4.5-p14, 2.4.4-p15 and earlier are affected by an Incorrect Authorization vulnerability. A low-privileged attacker could leverage this vulnerability to bypass security measures and gain unauthorized access to elevated privileges that increase integrity impact to high. Exploitation of this issue does not require user interaction. |
Adobe Commerce versions 2.4.9-alpha2, 2.4.8-p2, 2.4.7-p7, 2.4.6-p12, 2.4.5-p14, 2.4.4-p15 and earlier are affected by an Incorrect Authorization vulnerability. An attacker could leverage this vulnerability to bypass security measures and gain limited unauthorized read access. Exploitation of this issue does not require user interaction. |
Adobe Commerce versions 2.4.9-alpha2, 2.4.8-p2, 2.4.7-p7, 2.4.6-p12, 2.4.5-p14, 2.4.4-p15 and earlier are affected by an Incorrect Authorization vulnerability. A low-privileged attacker could leverage this vulnerability to bypass security measures and maintain unauthorized access. Exploitation of this issue does not require user interaction. |
Adobe Connect versions 12.9 and earlier are affected by a DOM-based Cross-Site Scripting (XSS) vulnerability that could be exploited by an attacker to execute malicious scripts in a victim's browser. Exploitation of this issue requires user interaction in that a victim must navigate to a crafted web page. A successful attacker can abuse this to achieve session takeover, increasing the confidentiality and integrity impact as high. Scope is changed. |
Flowise v3.0.1 < 3.0.8 and all versions after with 'ALLOW_BUILTIN_DEP' enabled contain an authenticated remote code execution vulnerability and node VM sandbox escape due to insecure use of integrated modules (Puppeteer and Playwright) within the nodevm execution environment. An authenticated attacker able to create or run a tool that leverages Puppeteer/Playwright can specify attacker-controlled browser binary paths and parameters. When the tool executes, the attacker-controlled executable/parameters are run on the host and circumvent the intended nodevm sandbox restrictions, resulting in execution of arbitrary code in the context of the host. This vulnerability was incorrectly assigned as a duplicate CVE-2025-26319 by the developers and should be considered distinct from that identifier. |
In the Linux kernel, the following vulnerability has been resolved:
iommufd: Fix race during abort for file descriptors
fput() doesn't actually call file_operations release() synchronously, it
puts the file on a work queue and it will be released eventually.
This is normally fine, except for iommufd the file and the iommufd_object
are tied to gether. The file has the object as it's private_data and holds
a users refcount, while the object is expected to remain alive as long as
the file is.
When the allocation of a new object aborts before installing the file it
will fput() the file and then go on to immediately kfree() the obj. This
causes a UAF once the workqueue completes the fput() and tries to
decrement the users refcount.
Fix this by putting the core code in charge of the file lifetime, and call
__fput_sync() during abort to ensure that release() is called before
kfree. __fput_sync() is a bit too tricky to open code in all the object
implementations. Instead the objects tell the core code where the file
pointer is and the core will take care of the life cycle.
If the object is successfully allocated then the file will hold a users
refcount and the iommufd_object cannot be destroyed.
It is worth noting that close(); ioctl(IOMMU_DESTROY); doesn't have an
issue because close() is already using a synchronous version of fput().
The UAF looks like this:
BUG: KASAN: slab-use-after-free in iommufd_eventq_fops_release+0x45/0xc0 drivers/iommu/iommufd/eventq.c:376
Write of size 4 at addr ffff888059c97804 by task syz.0.46/6164
CPU: 0 UID: 0 PID: 6164 Comm: syz.0.46 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xcd/0x630 mm/kasan/report.c:482
kasan_report+0xe0/0x110 mm/kasan/report.c:595
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0x100/0x1b0 mm/kasan/generic.c:189
instrument_atomic_read_write include/linux/instrumented.h:96 [inline]
atomic_fetch_sub_release include/linux/atomic/atomic-instrumented.h:400 [inline]
__refcount_dec include/linux/refcount.h:455 [inline]
refcount_dec include/linux/refcount.h:476 [inline]
iommufd_eventq_fops_release+0x45/0xc0 drivers/iommu/iommufd/eventq.c:376
__fput+0x402/0xb70 fs/file_table.c:468
task_work_run+0x14d/0x240 kernel/task_work.c:227
resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
exit_to_user_mode_loop+0xeb/0x110 kernel/entry/common.c:43
exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline]
syscall_exit_to_user_mode_work include/linux/entry-common.h:175 [inline]
syscall_exit_to_user_mode include/linux/entry-common.h:210 [inline]
do_syscall_64+0x41c/0x4c0 arch/x86/entry/syscall_64.c:100
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
In the Linux kernel, the following vulnerability has been resolved:
i40e: fix idx validation in i40e_validate_queue_map
Ensure idx is within range of active/initialized TCs when iterating over
vf->ch[idx] in i40e_validate_queue_map(). |
In the Linux kernel, the following vulnerability has been resolved:
i40e: add validation for ring_len param
The `ring_len` parameter provided by the virtual function (VF)
is assigned directly to the hardware memory context (HMC) without
any validation.
To address this, introduce an upper boundary check for both Tx and Rx
queue lengths. The maximum number of descriptors supported by the
hardware is 8k-32.
Additionally, enforce alignment constraints: Tx rings must be a multiple
of 8, and Rx rings must be a multiple of 32. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: fs, fix UAF in flow counter release
Fix a kernel trace [1] caused by releasing an HWS action of a local flow
counter in mlx5_cmd_hws_delete_fte(), where the HWS action refcount and
mutex were not initialized and the counter struct could already be freed
when deleting the rule.
Fix it by adding the missing initializations and adding refcount for the
local flow counter struct.
[1] Kernel log:
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x48
mlx5_fs_put_hws_action.part.0.cold+0x21/0x94 [mlx5_core]
mlx5_fc_put_hws_action+0x96/0xad [mlx5_core]
mlx5_fs_destroy_fs_actions+0x8b/0x152 [mlx5_core]
mlx5_cmd_hws_delete_fte+0x5a/0xa0 [mlx5_core]
del_hw_fte+0x1ce/0x260 [mlx5_core]
mlx5_del_flow_rules+0x12d/0x240 [mlx5_core]
? ttwu_queue_wakelist+0xf4/0x110
mlx5_ib_destroy_flow+0x103/0x1b0 [mlx5_ib]
uverbs_free_flow+0x20/0x50 [ib_uverbs]
destroy_hw_idr_uobject+0x1b/0x50 [ib_uverbs]
uverbs_destroy_uobject+0x34/0x1a0 [ib_uverbs]
uobj_destroy+0x3c/0x80 [ib_uverbs]
ib_uverbs_run_method+0x23e/0x360 [ib_uverbs]
? uverbs_finalize_object+0x60/0x60 [ib_uverbs]
ib_uverbs_cmd_verbs+0x14f/0x2c0 [ib_uverbs]
? do_tty_write+0x1a9/0x270
? file_tty_write.constprop.0+0x98/0xc0
? new_sync_write+0xfc/0x190
ib_uverbs_ioctl+0xd7/0x160 [ib_uverbs]
__x64_sys_ioctl+0x87/0xc0
do_syscall_64+0x59/0x90 |
Huijietong Cloud Video Platform contains a path traversal vulnerability that allows an unauthenticated attacker can supply arbitrary file paths to the `fullPath` parameter of the `/fileDownload?action=downloadBackupFile` endpoint and retrieve files from the server filesystem. VulnCheck has observed this vulnerability being targeted by the RondoDox botnet campaign. |
The WPBakery Page Builder plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the Custom JS module in all versions up to, and including, 8.6.1. This is due to insufficient input sanitization and output escaping of user-supplied JavaScript code in the Custom JS module. This makes it possible for authenticated attackers with contributor-level access or higher to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page via the WPBakery Page Builder Custom JS module granted they have access to the WPBakery editor for post types. |
The Dynamically Display Posts plugin for WordPress is vulnerable to SQL Injection via the 'tax_query' parameter in all versions up to, and including, 1.1 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
RemoteCall Remote Support Program (for Operator) versions prior to 5.3.0 contain an uncontrolled search path element vulnerability. If a crafted DLL is placed in the same folder with the affected product, it may cause an arbitrary code execution. |
Adobe Connect versions 12.9 and earlier are affected by a DOM-based Cross-Site Scripting (XSS) vulnerability that could be exploited by a high-privileged attacker to execute malicious scripts in a victim's browser. Exploitation of this issue requires user interaction in that a victim must navigate to a crafted web page. A successful attacker can abuse this to achieve session takeover, increasing the confidentiality and integrity impact as high. Scope is changed. |