CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Keysight Ixia Vision has an issue with hardcoded cryptographic material
which may allow an attacker to intercept or decrypt payloads sent to the
device via API calls or user authentication if the end user does not
replace the TLS certificate that shipped with the device. Remediation is
available in Version 6.9.1, released on September 23, 2025. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid crash when inline data creation follows DIO write
When inode is created and written to using direct IO, there is nothing
to clear the EXT4_STATE_MAY_INLINE_DATA flag. Thus when inode gets
truncated later to say 1 byte and written using normal write, we will
try to store the data as inline data. This confuses the code later
because the inode now has both normal block and inline data allocated
and the confusion manifests for example as:
kernel BUG at fs/ext4/inode.c:2721!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 359 Comm: repro Not tainted 5.19.0-rc8-00001-g31ba1e3b8305-dirty #15
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014
RIP: 0010:ext4_writepages+0x363d/0x3660
RSP: 0018:ffffc90000ccf260 EFLAGS: 00010293
RAX: ffffffff81e1abcd RBX: 0000008000000000 RCX: ffff88810842a180
RDX: 0000000000000000 RSI: 0000008000000000 RDI: 0000000000000000
RBP: ffffc90000ccf650 R08: ffffffff81e17d58 R09: ffffed10222c680b
R10: dfffe910222c680c R11: 1ffff110222c680a R12: ffff888111634128
R13: ffffc90000ccf880 R14: 0000008410000000 R15: 0000000000000001
FS: 00007f72635d2640(0000) GS:ffff88811b000000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000565243379180 CR3: 000000010aa74000 CR4: 0000000000150eb0
Call Trace:
<TASK>
do_writepages+0x397/0x640
filemap_fdatawrite_wbc+0x151/0x1b0
file_write_and_wait_range+0x1c9/0x2b0
ext4_sync_file+0x19e/0xa00
vfs_fsync_range+0x17b/0x190
ext4_buffered_write_iter+0x488/0x530
ext4_file_write_iter+0x449/0x1b90
vfs_write+0xbcd/0xf40
ksys_write+0x198/0x2c0
__x64_sys_write+0x7b/0x90
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
Fix the problem by clearing EXT4_STATE_MAY_INLINE_DATA when we are doing
direct IO write to a file. |
In the Linux kernel, the following vulnerability has been resolved:
net: hinic: fix memory leak when reading function table
When the input parameter idx meets the expected case option in
hinic_dbg_get_func_table(), read_data is not released. Fix it. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: remove a BUG_ON in ext4_mb_release_group_pa()
If a malicious fuzzer overwrites the ext4 superblock while it is
mounted such that the s_first_data_block is set to a very large
number, the calculation of the block group can underflow, and trigger
a BUG_ON check. Change this to be an ext4_warning so that we don't
crash the kernel. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: iscsi_tcp: Check that sock is valid before iscsi_set_param()
The validity of sock should be checked before assignment to avoid incorrect
values. Commit 57569c37f0ad ("scsi: iscsi: iscsi_tcp: Fix null-ptr-deref
while calling getpeername()") introduced this change which may lead to
inconsistent values of tcp_sw_conn->sendpage and conn->datadgst_en.
Fix the issue by moving the position of the assignment. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: fix potential leak in rtw89_append_probe_req_ie()
Do `kfree_skb(new)` before `goto out` to prevent potential leak. |
In the Linux kernel, the following vulnerability has been resolved:
fs: jfs: Fix UBSAN: array-index-out-of-bounds in dbAllocDmapLev
Syzkaller reported the following issue:
UBSAN: array-index-out-of-bounds in fs/jfs/jfs_dmap.c:1965:6
index -84 is out of range for type 's8[341]' (aka 'signed char[341]')
CPU: 1 PID: 4995 Comm: syz-executor146 Not tainted 6.4.0-rc6-syzkaller-00037-gb6dad5178cea #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:217 [inline]
__ubsan_handle_out_of_bounds+0x11c/0x150 lib/ubsan.c:348
dbAllocDmapLev+0x3e5/0x430 fs/jfs/jfs_dmap.c:1965
dbAllocCtl+0x113/0x920 fs/jfs/jfs_dmap.c:1809
dbAllocAG+0x28f/0x10b0 fs/jfs/jfs_dmap.c:1350
dbAlloc+0x658/0xca0 fs/jfs/jfs_dmap.c:874
dtSplitUp fs/jfs/jfs_dtree.c:974 [inline]
dtInsert+0xda7/0x6b00 fs/jfs/jfs_dtree.c:863
jfs_create+0x7b6/0xbb0 fs/jfs/namei.c:137
lookup_open fs/namei.c:3492 [inline]
open_last_lookups fs/namei.c:3560 [inline]
path_openat+0x13df/0x3170 fs/namei.c:3788
do_filp_open+0x234/0x490 fs/namei.c:3818
do_sys_openat2+0x13f/0x500 fs/open.c:1356
do_sys_open fs/open.c:1372 [inline]
__do_sys_openat fs/open.c:1388 [inline]
__se_sys_openat fs/open.c:1383 [inline]
__x64_sys_openat+0x247/0x290 fs/open.c:1383
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f1f4e33f7e9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffc21129578 EFLAGS: 00000246 ORIG_RAX: 0000000000000101
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1f4e33f7e9
RDX: 000000000000275a RSI: 0000000020000040 RDI: 00000000ffffff9c
RBP: 00007f1f4e2ff080 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f1f4e2ff110
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
</TASK>
The bug occurs when the dbAllocDmapLev()function attempts to access
dp->tree.stree[leafidx + LEAFIND] while the leafidx value is negative.
To rectify this, the patch introduces a safeguard within the
dbAllocDmapLev() function. A check has been added to verify if leafidx is
negative. If it is, the function immediately returns an I/O error, preventing
any further execution that could potentially cause harm.
Tested via syzbot. |
In the Linux kernel, the following vulnerability has been resolved:
iw_cxgb4: Fix potential NULL dereference in c4iw_fill_res_cm_id_entry()
This condition needs to match the previous "if (epcp->state == LISTEN) {"
exactly to avoid a NULL dereference of either "listen_ep" or "ep". The
problem is that "epcp" has been re-assigned so just testing
"if (epcp->state == LISTEN) {" a second time is not sufficient. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix potential NULL pointer dereference
Klocwork tool reported 'cur_dsd' may be dereferenced. Add fix to validate
pointer before dereferencing the pointer. |
In the Linux kernel, the following vulnerability has been resolved:
HID: mcp-2221: prevent UAF in delayed work
If the device is plugged/unplugged without giving time for mcp_init_work()
to complete, we might kick in the devm free code path and thus have
unavailable struct mcp_2221 while in delayed work.
Canceling the delayed_work item is enough to solve the issue, because
cancel_delayed_work_sync will prevent the work item to requeue itself. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: fix memory leak in rtw_usb_probe()
drivers/net/wireless/realtek/rtw88/usb.c:876 rtw_usb_probe()
warn: 'hw' from ieee80211_alloc_hw() not released on lines: 811
Fix this by modifying return to a goto statement. |
In the Linux kernel, the following vulnerability has been resolved:
tcp/udp: Fix memleaks of sk and zerocopy skbs with TX timestamp.
syzkaller reported [0] memory leaks of an UDP socket and ZEROCOPY
skbs. We can reproduce the problem with these sequences:
sk = socket(AF_INET, SOCK_DGRAM, 0)
sk.setsockopt(SOL_SOCKET, SO_TIMESTAMPING, SOF_TIMESTAMPING_TX_SOFTWARE)
sk.setsockopt(SOL_SOCKET, SO_ZEROCOPY, 1)
sk.sendto(b'', MSG_ZEROCOPY, ('127.0.0.1', 53))
sk.close()
sendmsg() calls msg_zerocopy_alloc(), which allocates a skb, sets
skb->cb->ubuf.refcnt to 1, and calls sock_hold(). Here, struct
ubuf_info_msgzc indirectly holds a refcnt of the socket. When the
skb is sent, __skb_tstamp_tx() clones it and puts the clone into
the socket's error queue with the TX timestamp.
When the original skb is received locally, skb_copy_ubufs() calls
skb_unclone(), and pskb_expand_head() increments skb->cb->ubuf.refcnt.
This additional count is decremented while freeing the skb, but struct
ubuf_info_msgzc still has a refcnt, so __msg_zerocopy_callback() is
not called.
The last refcnt is not released unless we retrieve the TX timestamped
skb by recvmsg(). Since we clear the error queue in inet_sock_destruct()
after the socket's refcnt reaches 0, there is a circular dependency.
If we close() the socket holding such skbs, we never call sock_put()
and leak the count, sk, and skb.
TCP has the same problem, and commit e0c8bccd40fc ("net: stream:
purge sk_error_queue in sk_stream_kill_queues()") tried to fix it
by calling skb_queue_purge() during close(). However, there is a
small chance that skb queued in a qdisc or device could be put
into the error queue after the skb_queue_purge() call.
In __skb_tstamp_tx(), the cloned skb should not have a reference
to the ubuf to remove the circular dependency, but skb_clone() does
not call skb_copy_ubufs() for zerocopy skb. So, we need to call
skb_orphan_frags_rx() for the cloned skb to call skb_copy_ubufs().
[0]:
BUG: memory leak
unreferenced object 0xffff88800c6d2d00 (size 1152):
comm "syz-executor392", pid 264, jiffies 4294785440 (age 13.044s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 cd af e8 81 00 00 00 00 ................
02 00 07 40 00 00 00 00 00 00 00 00 00 00 00 00 ...@............
backtrace:
[<0000000055636812>] sk_prot_alloc+0x64/0x2a0 net/core/sock.c:2024
[<0000000054d77b7a>] sk_alloc+0x3b/0x800 net/core/sock.c:2083
[<0000000066f3c7e0>] inet_create net/ipv4/af_inet.c:319 [inline]
[<0000000066f3c7e0>] inet_create+0x31e/0xe40 net/ipv4/af_inet.c:245
[<000000009b83af97>] __sock_create+0x2ab/0x550 net/socket.c:1515
[<00000000b9b11231>] sock_create net/socket.c:1566 [inline]
[<00000000b9b11231>] __sys_socket_create net/socket.c:1603 [inline]
[<00000000b9b11231>] __sys_socket_create net/socket.c:1588 [inline]
[<00000000b9b11231>] __sys_socket+0x138/0x250 net/socket.c:1636
[<000000004fb45142>] __do_sys_socket net/socket.c:1649 [inline]
[<000000004fb45142>] __se_sys_socket net/socket.c:1647 [inline]
[<000000004fb45142>] __x64_sys_socket+0x73/0xb0 net/socket.c:1647
[<0000000066999e0e>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<0000000066999e0e>] do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80
[<0000000017f238c1>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
BUG: memory leak
unreferenced object 0xffff888017633a00 (size 240):
comm "syz-executor392", pid 264, jiffies 4294785440 (age 13.044s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 2d 6d 0c 80 88 ff ff .........-m.....
backtrace:
[<000000002b1c4368>] __alloc_skb+0x229/0x320 net/core/skbuff.c:497
[<00000000143579a6>] alloc_skb include/linux/skbuff.h:1265 [inline]
[<00000000143579a6>] sock_omalloc+0xaa/0x190 net/core/sock.c:2596
[<00000000be626478>] msg_zerocopy_alloc net/core/skbuff.c:1294 [inline]
[<00000000be626478>]
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix disconnect vs accept race
Despite commit 0ad529d9fd2b ("mptcp: fix possible divide by zero in
recvmsg()"), the mptcp protocol is still prone to a race between
disconnect() (or shutdown) and accept.
The root cause is that the mentioned commit checks the msk-level
flag, but mptcp_stream_accept() does acquire the msk-level lock,
as it can rely directly on the first subflow lock.
As reported by Christoph than can lead to a race where an msk
socket is accepted after that mptcp_subflow_queue_clean() releases
the listener socket lock and just before it takes destructive
actions leading to the following splat:
BUG: kernel NULL pointer dereference, address: 0000000000000012
PGD 5a4ca067 P4D 5a4ca067 PUD 37d4c067 PMD 0
Oops: 0000 [#1] PREEMPT SMP
CPU: 2 PID: 10955 Comm: syz-executor.5 Not tainted 6.5.0-rc1-gdc7b257ee5dd #37
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
RIP: 0010:mptcp_stream_accept+0x1ee/0x2f0 include/net/inet_sock.h:330
Code: 0a 09 00 48 8b 1b 4c 39 e3 74 07 e8 bc 7c 7f fe eb a1 e8 b5 7c 7f fe 4c 8b 6c 24 08 eb 05 e8 a9 7c 7f fe 49 8b 85 d8 09 00 00 <0f> b6 40 12 88 44 24 07 0f b6 6c 24 07 bf 07 00 00 00 89 ee e8 89
RSP: 0018:ffffc90000d07dc0 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff888037e8d020 RCX: ffff88803b093300
RDX: 0000000000000000 RSI: ffffffff833822c5 RDI: ffffffff8333896a
RBP: 0000607f82031520 R08: ffff88803b093300 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000003e83 R12: ffff888037e8d020
R13: ffff888037e8c680 R14: ffff888009af7900 R15: ffff888009af6880
FS: 00007fc26d708640(0000) GS:ffff88807dd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000012 CR3: 0000000066bc5001 CR4: 0000000000370ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
do_accept+0x1ae/0x260 net/socket.c:1872
__sys_accept4+0x9b/0x110 net/socket.c:1913
__do_sys_accept4 net/socket.c:1954 [inline]
__se_sys_accept4 net/socket.c:1951 [inline]
__x64_sys_accept4+0x20/0x30 net/socket.c:1951
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x47/0xa0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Address the issue by temporary removing the pending request socket
from the accept queue, so that racing accept() can't touch them.
After depleting the msk - the ssk still exists, as plain TCP sockets,
re-insert them into the accept queue, so that later inet_csk_listen_stop()
will complete the tcp socket disposal. |
DX Unified Infrastructure Management (Nimsoft/UIM) and below contains an improper ACL handling vulnerability in the robot (controller) component. A remote attacker can execute commands, read from, or write to the target system. |
NiceHash QuickMiner 6.12.0 perform software updates over HTTP without validating digital signatures or hash checks. An attacker capable of intercepting or redirecting traffic to the update url and can hijack the update process and deliver arbitrary executables that are automatically executed, resulting in full remote code execution. This constitutes a critical supply chain attack vector. |
The Tiny Bootstrap Elements Light plugin for WordPress is vulnerable to Local File Inclusion in all versions up to, and including, 4.3.34 via the 'language' parameter. This makes it possible for unauthenticated attackers to include and execute arbitrary .php files on the server, allowing the execution of any PHP code in those files. This can be used to bypass access controls, obtain sensitive data, or achieve code execution in cases where .php file types can be uploaded and included. |
The Schema & Structured Data for WP & AMP WordPress plugin before 1.50 does not properly handles HTML tag attribute modifications, making it possible for unauthenticated attackers to conduct Stored XSS attacks via post comments. |
Local privilege escalation due to DLL hijacking vulnerability. The following products are affected: Acronis True Image (Windows) before build 42386. |
In the Linux kernel, the following vulnerability has been resolved:
i40e: remove read access to debugfs files
The 'command' and 'netdev_ops' debugfs files are a legacy debugging
interface supported by the i40e driver since its early days by commit
02e9c290814c ("i40e: debugfs interface").
Both of these debugfs files provide a read handler which is mostly useless,
and which is implemented with questionable logic. They both use a static
256 byte buffer which is initialized to the empty string. In the case of
the 'command' file this buffer is literally never used and simply wastes
space. In the case of the 'netdev_ops' file, the last command written is
saved here.
On read, the files contents are presented as the name of the device
followed by a colon and then the contents of their respective static
buffer. For 'command' this will always be "<device>: ". For 'netdev_ops',
this will be "<device>: <last command written>". But note the buffer is
shared between all devices operated by this module. At best, it is mostly
meaningless information, and at worse it could be accessed simultaneously
as there doesn't appear to be any locking mechanism.
We have also recently received multiple reports for both read functions
about their use of snprintf and potential overflow that could result in
reading arbitrary kernel memory. For the 'command' file, this is definitely
impossible, since the static buffer is always zero and never written to.
For the 'netdev_ops' file, it does appear to be possible, if the user
carefully crafts the command input, it will be copied into the buffer,
which could be large enough to cause snprintf to truncate, which then
causes the copy_to_user to read beyond the length of the buffer allocated
by kzalloc.
A minimal fix would be to replace snprintf() with scnprintf() which would
cap the return to the number of bytes written, preventing an overflow. A
more involved fix would be to drop the mostly useless static buffers,
saving 512 bytes and modifying the read functions to stop needing those as
input.
Instead, lets just completely drop the read access to these files. These
are debug interfaces exposed as part of debugfs, and I don't believe that
dropping read access will break any script, as the provided output is
pretty useless. You can find the netdev name through other more standard
interfaces, and the 'netdev_ops' interface can easily result in garbage if
you issue simultaneous writes to multiple devices at once.
In order to properly remove the i40e_dbg_netdev_ops_buf, we need to
refactor its write function to avoid using the static buffer. Instead, use
the same logic as the i40e_dbg_command_write, with an allocated buffer.
Update the code to use this instead of the static buffer, and ensure we
free the buffer on exit. This fixes simultaneous writes to 'netdev_ops' on
multiple devices, and allows us to remove the now unused static buffer
along with removing the read access. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: remove oem i2c adapter on finish
Fixes a bug where unbinding of the GPU would leave the oem i2c adapter
registered resulting in a null pointer dereference when applications try
to access the invalid device.
(cherry picked from commit 89923fb7ead4fdd37b78dd49962d9bb5892403e6) |