CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: nbpfaxi: Fix memory corruption in probe()
The nbpf->chan[] array is allocated earlier in the nbpf_probe() function
and it has "num_channels" elements. These three loops iterate one
element farther than they should and corrupt memory.
The changes to the second loop are more involved. In this case, we're
copying data from the irqbuf[] array into the nbpf->chan[] array. If
the data in irqbuf[i] is the error IRQ then we skip it, so the iterators
are not in sync. I added a check to ensure that we don't go beyond the
end of the irqbuf[] array. I'm pretty sure this can't happen, but it
seemed harmless to add a check.
On the other hand, after the loop has ended there is a check to ensure
that the "chan" iterator is where we expect it to be. In the original
code we went one element beyond the end of the array so the iterator
wasn't in the correct place and it would always return -EINVAL. However,
now it will always be in the correct place. I deleted the check since
we know the result. |
In the Linux kernel, the following vulnerability has been resolved:
phy: tegra: xusb: Fix unbalanced regulator disable in UTMI PHY mode
When transitioning from USB_ROLE_DEVICE to USB_ROLE_NONE, the code
assumed that the regulator should be disabled. However, if the regulator
is marked as always-on, regulator_is_enabled() continues to return true,
leading to an incorrect attempt to disable a regulator which is not
enabled.
This can result in warnings such as:
[ 250.155624] WARNING: CPU: 1 PID: 7326 at drivers/regulator/core.c:3004
_regulator_disable+0xe4/0x1a0
[ 250.155652] unbalanced disables for VIN_SYS_5V0
To fix this, we move the regulator control logic into
tegra186_xusb_padctl_id_override() function since it's directly related
to the ID override state. The regulator is now only disabled when the role
transitions from USB_ROLE_HOST to USB_ROLE_NONE, by checking the VBUS_ID
register. This ensures that regulator enable/disable operations are
properly balanced and only occur when actually transitioning to/from host
mode. |
In the Linux kernel, the following vulnerability has been resolved:
comedi: pcl812: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
if ((1 << it->options[1]) & board->irq_bits) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. Valid `it->options[1]` values that select the IRQ
will be in the range [1,15]. The value 0 explicitly disables the use of
interrupts. |
In the Linux kernel, the following vulnerability has been resolved:
comedi: aio_iiro_16: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
if ((1 << it->options[1]) & 0xdcfc) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. Valid `it->options[1]` values that select the IRQ
will be in the range [1,15]. The value 0 explicitly disables the use of
interrupts. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Reject %p% format string in bprintf-like helpers
static const char fmt[] = "%p%";
bpf_trace_printk(fmt, sizeof(fmt));
The above BPF program isn't rejected and causes a kernel warning at
runtime:
Please remove unsupported %\x00 in format string
WARNING: CPU: 1 PID: 7244 at lib/vsprintf.c:2680 format_decode+0x49c/0x5d0
This happens because bpf_bprintf_prepare skips over the second %,
detected as punctuation, while processing %p. This patch fixes it by
not skipping over punctuation. %\x00 is then processed in the next
iteration and rejected. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix use-after-free in cifs_oplock_break
A race condition can occur in cifs_oplock_break() leading to a
use-after-free of the cinode structure when unmounting:
cifs_oplock_break()
_cifsFileInfo_put(cfile)
cifsFileInfo_put_final()
cifs_sb_deactive()
[last ref, start releasing sb]
kill_sb()
kill_anon_super()
generic_shutdown_super()
evict_inodes()
dispose_list()
evict()
destroy_inode()
call_rcu(&inode->i_rcu, i_callback)
spin_lock(&cinode->open_file_lock) <- OK
[later] i_callback()
cifs_free_inode()
kmem_cache_free(cinode)
spin_unlock(&cinode->open_file_lock) <- UAF
cifs_done_oplock_break(cinode) <- UAF
The issue occurs when umount has already released its reference to the
superblock. When _cifsFileInfo_put() calls cifs_sb_deactive(), this
releases the last reference, triggering the immediate cleanup of all
inodes under RCU. However, cifs_oplock_break() continues to access the
cinode after this point, resulting in use-after-free.
Fix this by holding an extra reference to the superblock during the
entire oplock break operation. This ensures that the superblock and
its inodes remain valid until the oplock break completes. |
In the Linux kernel, the following vulnerability has been resolved:
clone_private_mnt(): make sure that caller has CAP_SYS_ADMIN in the right userns
What we want is to verify there is that clone won't expose something
hidden by a mount we wouldn't be able to undo. "Wouldn't be able to undo"
may be a result of MNT_LOCKED on a child, but it may also come from
lacking admin rights in the userns of the namespace mount belongs to.
clone_private_mnt() checks the former, but not the latter.
There's a number of rather confusing CAP_SYS_ADMIN checks in various
userns during the mount, especially with the new mount API; they serve
different purposes and in case of clone_private_mnt() they usually,
but not always end up covering the missing check mentioned above. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: configfs: Fix OOB read on empty string write
When writing an empty string to either 'qw_sign' or 'landingPage'
sysfs attributes, the store functions attempt to access page[l - 1]
before validating that the length 'l' is greater than zero.
This patch fixes the vulnerability by adding a check at the beginning
of os_desc_qw_sign_store() and webusb_landingPage_store() to handle
the zero-length input case gracefully by returning immediately. |
In the Linux kernel, the following vulnerability has been resolved:
HID: core: ensure the allocated report buffer can contain the reserved report ID
When the report ID is not used, the low level transport drivers expect
the first byte to be 0. However, currently the allocated buffer not
account for that extra byte, meaning that instead of having 8 guaranteed
bytes for implement to be working, we only have 7. |
In the Linux kernel, the following vulnerability has been resolved:
HID: core: do not bypass hid_hw_raw_request
hid_hw_raw_request() is actually useful to ensure the provided buffer
and length are valid. Directly calling in the low level transport driver
function bypassed those checks and allowed invalid paramto be used. |
In the Linux kernel, the following vulnerability has been resolved:
mptcp: make fallback action and fallback decision atomic
Syzkaller reported the following splat:
WARNING: CPU: 1 PID: 7704 at net/mptcp/protocol.h:1223 __mptcp_do_fallback net/mptcp/protocol.h:1223 [inline]
WARNING: CPU: 1 PID: 7704 at net/mptcp/protocol.h:1223 mptcp_do_fallback net/mptcp/protocol.h:1244 [inline]
WARNING: CPU: 1 PID: 7704 at net/mptcp/protocol.h:1223 check_fully_established net/mptcp/options.c:982 [inline]
WARNING: CPU: 1 PID: 7704 at net/mptcp/protocol.h:1223 mptcp_incoming_options+0x21a8/0x2510 net/mptcp/options.c:1153
Modules linked in:
CPU: 1 UID: 0 PID: 7704 Comm: syz.3.1419 Not tainted 6.16.0-rc3-gbd5ce2324dba #20 PREEMPT(voluntary)
Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:__mptcp_do_fallback net/mptcp/protocol.h:1223 [inline]
RIP: 0010:mptcp_do_fallback net/mptcp/protocol.h:1244 [inline]
RIP: 0010:check_fully_established net/mptcp/options.c:982 [inline]
RIP: 0010:mptcp_incoming_options+0x21a8/0x2510 net/mptcp/options.c:1153
Code: 24 18 e8 bb 2a 00 fd e9 1b df ff ff e8 b1 21 0f 00 e8 ec 5f c4 fc 44 0f b7 ac 24 b0 00 00 00 e9 54 f1 ff ff e8 d9 5f c4 fc 90 <0f> 0b 90 e9 b8 f4 ff ff e8 8b 2a 00 fd e9 8d e6 ff ff e8 81 2a 00
RSP: 0018:ffff8880a3f08448 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8880180a8000 RCX: ffffffff84afcf45
RDX: ffff888090223700 RSI: ffffffff84afdaa7 RDI: 0000000000000001
RBP: ffff888017955780 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
R13: ffff8880180a8910 R14: ffff8880a3e9d058 R15: 0000000000000000
FS: 00005555791b8500(0000) GS:ffff88811c495000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000110c2800b7 CR3: 0000000058e44000 CR4: 0000000000350ef0
Call Trace:
<IRQ>
tcp_reset+0x26f/0x2b0 net/ipv4/tcp_input.c:4432
tcp_validate_incoming+0x1057/0x1b60 net/ipv4/tcp_input.c:5975
tcp_rcv_established+0x5b5/0x21f0 net/ipv4/tcp_input.c:6166
tcp_v4_do_rcv+0x5dc/0xa70 net/ipv4/tcp_ipv4.c:1925
tcp_v4_rcv+0x3473/0x44a0 net/ipv4/tcp_ipv4.c:2363
ip_protocol_deliver_rcu+0xba/0x480 net/ipv4/ip_input.c:205
ip_local_deliver_finish+0x2f1/0x500 net/ipv4/ip_input.c:233
NF_HOOK include/linux/netfilter.h:317 [inline]
NF_HOOK include/linux/netfilter.h:311 [inline]
ip_local_deliver+0x1be/0x560 net/ipv4/ip_input.c:254
dst_input include/net/dst.h:469 [inline]
ip_rcv_finish net/ipv4/ip_input.c:447 [inline]
NF_HOOK include/linux/netfilter.h:317 [inline]
NF_HOOK include/linux/netfilter.h:311 [inline]
ip_rcv+0x514/0x810 net/ipv4/ip_input.c:567
__netif_receive_skb_one_core+0x197/0x1e0 net/core/dev.c:5975
__netif_receive_skb+0x1f/0x120 net/core/dev.c:6088
process_backlog+0x301/0x1360 net/core/dev.c:6440
__napi_poll.constprop.0+0xba/0x550 net/core/dev.c:7453
napi_poll net/core/dev.c:7517 [inline]
net_rx_action+0xb44/0x1010 net/core/dev.c:7644
handle_softirqs+0x1d0/0x770 kernel/softirq.c:579
do_softirq+0x3f/0x90 kernel/softirq.c:480
</IRQ>
<TASK>
__local_bh_enable_ip+0xed/0x110 kernel/softirq.c:407
local_bh_enable include/linux/bottom_half.h:33 [inline]
inet_csk_listen_stop+0x2c5/0x1070 net/ipv4/inet_connection_sock.c:1524
mptcp_check_listen_stop.part.0+0x1cc/0x220 net/mptcp/protocol.c:2985
mptcp_check_listen_stop net/mptcp/mib.h:118 [inline]
__mptcp_close+0x9b9/0xbd0 net/mptcp/protocol.c:3000
mptcp_close+0x2f/0x140 net/mptcp/protocol.c:3066
inet_release+0xed/0x200 net/ipv4/af_inet.c:435
inet6_release+0x4f/0x70 net/ipv6/af_inet6.c:487
__sock_release+0xb3/0x270 net/socket.c:649
sock_close+0x1c/0x30 net/socket.c:1439
__fput+0x402/0xb70 fs/file_table.c:465
task_work_run+0x150/0x240 kernel/task_work.c:227
resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
exit_to_user_mode_loop+0xd4
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix use-after-free in crypt_message when using async crypto
The CVE-2024-50047 fix removed asynchronous crypto handling from
crypt_message(), assuming all crypto operations are synchronous.
However, when hardware crypto accelerators are used, this can cause
use-after-free crashes:
crypt_message()
// Allocate the creq buffer containing the req
creq = smb2_get_aead_req(..., &req);
// Async encryption returns -EINPROGRESS immediately
rc = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req);
// Free creq while async operation is still in progress
kvfree_sensitive(creq, ...);
Hardware crypto modules often implement async AEAD operations for
performance. When crypto_aead_encrypt/decrypt() returns -EINPROGRESS,
the operation completes asynchronously. Without crypto_wait_req(),
the function immediately frees the request buffer, leading to crashes
when the driver later accesses the freed memory.
This results in a use-after-free condition when the hardware crypto
driver later accesses the freed request structure, leading to kernel
crashes with NULL pointer dereferences.
The issue occurs because crypto_alloc_aead() with mask=0 doesn't
guarantee synchronous operation. Even without CRYPTO_ALG_ASYNC in
the mask, async implementations can be selected.
Fix by restoring the async crypto handling:
- DECLARE_CRYPTO_WAIT(wait) for completion tracking
- aead_request_set_callback() for async completion notification
- crypto_wait_req() to wait for operation completion
This ensures the request buffer isn't freed until the crypto operation
completes, whether synchronous or asynchronous, while preserving the
CVE-2024-50047 fix. |
In the Linux kernel, the following vulnerability has been resolved:
soc: aspeed: lpc-snoop: Don't disable channels that aren't enabled
Mitigate e.g. the following:
# echo 1e789080.lpc-snoop > /sys/bus/platform/drivers/aspeed-lpc-snoop/unbind
...
[ 120.363594] Unable to handle kernel NULL pointer dereference at virtual address 00000004 when write
[ 120.373866] [00000004] *pgd=00000000
[ 120.377910] Internal error: Oops: 805 [#1] SMP ARM
[ 120.383306] CPU: 1 UID: 0 PID: 315 Comm: sh Not tainted 6.15.0-rc1-00009-g926217bc7d7d-dirty #20 NONE
...
[ 120.679543] Call trace:
[ 120.679559] misc_deregister from aspeed_lpc_snoop_remove+0x84/0xac
[ 120.692462] aspeed_lpc_snoop_remove from platform_remove+0x28/0x38
[ 120.700996] platform_remove from device_release_driver_internal+0x188/0x200
... |
In the Linux kernel, the following vulnerability has been resolved:
comedi: das16m1: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
/* only irqs 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, and 15 are valid */
if ((1 << it->options[1]) & 0xdcfc) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. |
In the Linux kernel, the following vulnerability has been resolved:
comedi: das6402: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
/* IRQs 2,3,5,6,7, 10,11,15 are valid for "enhanced" mode */
if ((1 << it->options[1]) & 0x8cec) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. Valid `it->options[1]` values that select the IRQ
will be in the range [1,15]. The value 0 explicitly disables the use of
interrupts. |
In the Linux kernel, the following vulnerability has been resolved:
comedi: Fail COMEDI_INSNLIST ioctl if n_insns is too large
The handling of the `COMEDI_INSNLIST` ioctl allocates a kernel buffer to
hold the array of `struct comedi_insn`, getting the length from the
`n_insns` member of the `struct comedi_insnlist` supplied by the user.
The allocation will fail with a WARNING and a stack dump if it is too
large.
Avoid that by failing with an `-EINVAL` error if the supplied `n_insns`
value is unreasonable.
Define the limit on the `n_insns` value in the `MAX_INSNS` macro. Set
this to the same value as `MAX_SAMPLES` (65536), which is the maximum
allowed sum of the values of the member `n` in the array of `struct
comedi_insn`, and sensible comedi instructions will have an `n` of at
least 1. |
In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized data in insn_rw_emulate_bits()
For Comedi `INSN_READ` and `INSN_WRITE` instructions on "digital"
subdevices (subdevice types `COMEDI_SUBD_DI`, `COMEDI_SUBD_DO`, and
`COMEDI_SUBD_DIO`), it is common for the subdevice driver not to have
`insn_read` and `insn_write` handler functions, but to have an
`insn_bits` handler function for handling Comedi `INSN_BITS`
instructions. In that case, the subdevice's `insn_read` and/or
`insn_write` function handler pointers are set to point to the
`insn_rw_emulate_bits()` function by `__comedi_device_postconfig()`.
For `INSN_WRITE`, `insn_rw_emulate_bits()` currently assumes that the
supplied `data[0]` value is a valid copy from user memory. It will at
least exist because `do_insnlist_ioctl()` and `do_insn_ioctl()` in
"comedi_fops.c" ensure at lease `MIN_SAMPLES` (16) elements are
allocated. However, if `insn->n` is 0 (which is allowable for
`INSN_READ` and `INSN_WRITE` instructions, then `data[0]` may contain
uninitialized data, and certainly contains invalid data, possibly from a
different instruction in the array of instructions handled by
`do_insnlist_ioctl()`. This will result in an incorrect value being
written to the digital output channel (or to the digital input/output
channel if configured as an output), and may be reflected in the
internal saved state of the channel.
Fix it by returning 0 early if `insn->n` is 0, before reaching the code
that accesses `data[0]`. Previously, the function always returned 1 on
success, but it is supposed to be the number of data samples actually
read or written up to `insn->n`, which is 0 in this case. |
In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix initialization of data for instructions that write to subdevice
Some Comedi subdevice instruction handlers are known to access
instruction data elements beyond the first `insn->n` elements in some
cases. The `do_insn_ioctl()` and `do_insnlist_ioctl()` functions
allocate at least `MIN_SAMPLES` (16) data elements to deal with this,
but they do not initialize all of that. For Comedi instruction codes
that write to the subdevice, the first `insn->n` data elements are
copied from user-space, but the remaining elements are left
uninitialized. That could be a problem if the subdevice instruction
handler reads the uninitialized data. Ensure that the first
`MIN_SAMPLES` elements are initialized before calling these instruction
handlers, filling the uncopied elements with 0. For
`do_insnlist_ioctl()`, the same data buffer elements are used for
handling a list of instructions, so ensure the first `MIN_SAMPLES`
elements are initialized for each instruction that writes to the
subdevice. |
In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_qfq: Fix race condition on qfq_aggregate
A race condition can occur when 'agg' is modified in qfq_change_agg
(called during qfq_enqueue) while other threads access it
concurrently. For example, qfq_dump_class may trigger a NULL
dereference, and qfq_delete_class may cause a use-after-free.
This patch addresses the issue by:
1. Moved qfq_destroy_class into the critical section.
2. Added sch_tree_lock protection to qfq_dump_class and
qfq_dump_class_stats. |
In the Linux kernel, the following vulnerability has been resolved:
rpl: Fix use-after-free in rpl_do_srh_inline().
Running lwt_dst_cache_ref_loop.sh in selftest with KASAN triggers
the splat below [0].
rpl_do_srh_inline() fetches ipv6_hdr(skb) and accesses it after
skb_cow_head(), which is illegal as the header could be freed then.
Let's fix it by making oldhdr to a local struct instead of a pointer.
[0]:
[root@fedora net]# ./lwt_dst_cache_ref_loop.sh
...
TEST: rpl (input)
[ 57.631529] ==================================================================
BUG: KASAN: slab-use-after-free in rpl_do_srh_inline.isra.0 (net/ipv6/rpl_iptunnel.c:174)
Read of size 40 at addr ffff888122bf96d8 by task ping6/1543
CPU: 50 UID: 0 PID: 1543 Comm: ping6 Not tainted 6.16.0-rc5-01302-gfadd1e6231b1 #23 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl (lib/dump_stack.c:122)
print_report (mm/kasan/report.c:409 mm/kasan/report.c:521)
kasan_report (mm/kasan/report.c:221 mm/kasan/report.c:636)
kasan_check_range (mm/kasan/generic.c:175 (discriminator 1) mm/kasan/generic.c:189 (discriminator 1))
__asan_memmove (mm/kasan/shadow.c:94 (discriminator 2))
rpl_do_srh_inline.isra.0 (net/ipv6/rpl_iptunnel.c:174)
rpl_input (net/ipv6/rpl_iptunnel.c:201 net/ipv6/rpl_iptunnel.c:282)
lwtunnel_input (net/core/lwtunnel.c:459)
ipv6_rcv (./include/net/dst.h:471 (discriminator 1) ./include/net/dst.h:469 (discriminator 1) net/ipv6/ip6_input.c:79 (discriminator 1) ./include/linux/netfilter.h:317 (discriminator 1) ./include/linux/netfilter.h:311 (discriminator 1) net/ipv6/ip6_input.c:311 (discriminator 1))
__netif_receive_skb_one_core (net/core/dev.c:5967)
process_backlog (./include/linux/rcupdate.h:869 net/core/dev.c:6440)
__napi_poll.constprop.0 (net/core/dev.c:7452)
net_rx_action (net/core/dev.c:7518 net/core/dev.c:7643)
handle_softirqs (kernel/softirq.c:579)
do_softirq (kernel/softirq.c:480 (discriminator 20))
</IRQ>
<TASK>
__local_bh_enable_ip (kernel/softirq.c:407)
__dev_queue_xmit (net/core/dev.c:4740)
ip6_finish_output2 (./include/linux/netdevice.h:3358 ./include/net/neighbour.h:526 ./include/net/neighbour.h:540 net/ipv6/ip6_output.c:141)
ip6_finish_output (net/ipv6/ip6_output.c:215 net/ipv6/ip6_output.c:226)
ip6_output (./include/linux/netfilter.h:306 net/ipv6/ip6_output.c:248)
ip6_send_skb (net/ipv6/ip6_output.c:1983)
rawv6_sendmsg (net/ipv6/raw.c:588 net/ipv6/raw.c:918)
__sys_sendto (net/socket.c:714 (discriminator 1) net/socket.c:729 (discriminator 1) net/socket.c:2228 (discriminator 1))
__x64_sys_sendto (net/socket.c:2231)
do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
RIP: 0033:0x7f68cffb2a06
Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08
RSP: 002b:00007ffefb7c53d0 EFLAGS: 00000202 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 0000564cd69f10a0 RCX: 00007f68cffb2a06
RDX: 0000000000000040 RSI: 0000564cd69f10a4 RDI: 0000000000000003
RBP: 00007ffefb7c53f0 R08: 0000564cd6a032ac R09: 000000000000001c
R10: 0000000000000000 R11: 0000000000000202 R12: 0000564cd69f10a4
R13: 0000000000000040 R14: 00007ffefb7c66e0 R15: 0000564cd69f10a0
</TASK>
Allocated by task 1543:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:60 (discriminator 1) mm/kasan/common.c:69 (discriminator 1))
__kasan_slab_alloc (mm/kasan/common.c:319 mm/kasan/common.c:345)
kmem_cache_alloc_node_noprof (./include/linux/kasan.h:250 mm/slub.c:4148 mm/slub.c:4197 mm/slub.c:4249)
kmalloc_reserve (net/core/skbuff.c:581 (discriminator 88))
__alloc_skb (net/core/skbuff.c:669)
__ip6_append_data (net/ipv6/ip6_output.c:1672 (discriminator 1))
ip6_
---truncated--- |