| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Fix overflow in __rb_map_vma
An overflow occurred when performing the following calculation:
nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff;
Add a check before the calculation to avoid this problem.
syzbot reported this as a slab-out-of-bounds in __rb_map_vma:
BUG: KASAN: slab-out-of-bounds in __rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058
Read of size 8 at addr ffff8880767dd2b8 by task syz-executor187/5836
CPU: 0 UID: 0 PID: 5836 Comm: syz-executor187 Not tainted 6.13.0-rc2-syzkaller-00159-gf932fb9b4074 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/25/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xc3/0x620 mm/kasan/report.c:489
kasan_report+0xd9/0x110 mm/kasan/report.c:602
__rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058
ring_buffer_map+0x56e/0x9b0 kernel/trace/ring_buffer.c:7138
tracing_buffers_mmap+0xa6/0x120 kernel/trace/trace.c:8482
call_mmap include/linux/fs.h:2183 [inline]
mmap_file mm/internal.h:124 [inline]
__mmap_new_file_vma mm/vma.c:2291 [inline]
__mmap_new_vma mm/vma.c:2355 [inline]
__mmap_region+0x1786/0x2670 mm/vma.c:2456
mmap_region+0x127/0x320 mm/mmap.c:1348
do_mmap+0xc00/0xfc0 mm/mmap.c:496
vm_mmap_pgoff+0x1ba/0x360 mm/util.c:580
ksys_mmap_pgoff+0x32c/0x5c0 mm/mmap.c:542
__do_sys_mmap arch/x86/kernel/sys_x86_64.c:89 [inline]
__se_sys_mmap arch/x86/kernel/sys_x86_64.c:82 [inline]
__x64_sys_mmap+0x125/0x190 arch/x86/kernel/sys_x86_64.c:82
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The reproducer for this bug is:
------------------------8<-------------------------
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <asm/types.h>
#include <sys/mman.h>
int main(int argc, char **argv)
{
int page_size = getpagesize();
int fd;
void *meta;
system("echo 1 > /sys/kernel/tracing/buffer_size_kb");
fd = open("/sys/kernel/tracing/per_cpu/cpu0/trace_pipe_raw", O_RDONLY);
meta = mmap(NULL, page_size, PROT_READ, MAP_SHARED, fd, page_size * 5);
}
------------------------>8------------------------- |
| In the Linux kernel, the following vulnerability has been resolved:
af_netlink: Fix shift out of bounds in group mask calculation
When a netlink message is received, netlink_recvmsg() fills in the address
of the sender. One of the fields is the 32-bit bitfield nl_groups, which
carries the multicast group on which the message was received. The least
significant bit corresponds to group 1, and therefore the highest group
that the field can represent is 32. Above that, the UB sanitizer flags the
out-of-bounds shift attempts.
Which bits end up being set in such case is implementation defined, but
it's either going to be a wrong non-zero value, or zero, which is at least
not misleading. Make the latter choice deterministic by always setting to 0
for higher-numbered multicast groups.
To get information about membership in groups >= 32, userspace is expected
to use nl_pktinfo control messages[0], which are enabled by NETLINK_PKTINFO
socket option.
[0] https://lwn.net/Articles/147608/
The way to trigger this issue is e.g. through monitoring the BRVLAN group:
# bridge monitor vlan &
# ip link add name br type bridge
Which produces the following citation:
UBSAN: shift-out-of-bounds in net/netlink/af_netlink.c:162:19
shift exponent 32 is too large for 32-bit type 'int' |
| In the Linux kernel, the following vulnerability has been resolved:
drm/bridge: anx7625: Fix overflow issue on reading EDID
The length of EDID block can be longer than 256 bytes, so we should use
`int` instead of `u8` for the `edid_pos` variable. |
| Ashlar-Vellum Cobalt VC6 File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25704. |
| Ashlar-Vellum Cobalt LI File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of LI files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25476. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: zynqmp_dma: In struct zynqmp_dma_chan fix desc_size data type
In zynqmp_dma_alloc/free_chan_resources functions there is a
potential overflow in the below expressions.
dma_alloc_coherent(chan->dev, (2 * chan->desc_size *
ZYNQMP_DMA_NUM_DESCS),
&chan->desc_pool_p, GFP_KERNEL);
dma_free_coherent(chan->dev,(2 * ZYNQMP_DMA_DESC_SIZE(chan) *
ZYNQMP_DMA_NUM_DESCS),
chan->desc_pool_v, chan->desc_pool_p);
The arguments desc_size and ZYNQMP_DMA_NUM_DESCS were 32 bit. Though
this overflow condition is not observed but it is a potential problem
in the case of 32-bit multiplication. Hence fix it by changing the
desc_size data type to size_t.
In addition to coverity fix it also reuse ZYNQMP_DMA_DESC_SIZE macro in
dma_alloc_coherent API argument.
Addresses-Coverity: Event overflow_before_widen. |
| In the Linux kernel, the following vulnerability has been resolved:
uaccess: fix integer overflow on access_ok()
Three architectures check the end of a user access against the
address limit without taking a possible overflow into account.
Passing a negative length or another overflow in here returns
success when it should not.
Use the most common correct implementation here, which optimizes
for a constant 'size' argument, and turns the common case into a
single comparison. |
| NVIDIA Triton Inference Server contains a vulnerability in the model loading API, where a user could cause an integer overflow or wraparound error by loading a model with an extra-large file size that overflows an internal variable. A successful exploit of this vulnerability might lead to denial of service. |
| WebAssembly Micro Runtime (WAMR) is a lightweight standalone WebAssembly (Wasm) runtime. In WAMR versions prior to 2.4.2, when running in LLVM-JIT mode, the runtime cannot exit normally when executing WebAssembly programs containing a memory.fill instruction where the first operand (memory address pointer) is greater than or equal to 2147483648 bytes (2GiB). This causes the runtime to hang in release builds or crash in debug builds due to accessing an invalid pointer. The issue does not occur in FAST-JIT mode or other runtime tools. This has been fixed in version 2.4.2. |
| Dover Fueling Solutions ProGauge MagLink LX4 Devices fail to handle Unix time values beyond a certain point.
An attacker can manually change the system time to exploit this
limitation, potentially causing errors in authentication and leading to a
denial-of-service condition. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix overflow for large capacity partition
Using int type for sector index, there will be overflow in a large
capacity partition.
For example, if storage with sector size of 512 bytes and partition
capacity is larger than 2TB, there will be overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Check bloom filter map value size
This patch adds a missing check to bloom filter creating, rejecting
values above KMALLOC_MAX_SIZE. This brings the bloom map in line with
many other map types.
The lack of this protection can cause kernel crashes for value sizes
that overflow int's. Such a crash was caught by syzkaller. The next
patch adds more guard-rails at a lower level. |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix overflow in blk_ioctl_discard()
There is no check for overflow of 'start + len' in blk_ioctl_discard().
Hung task occurs if submit an discard ioctl with the following param:
start = 0x80000000000ff000, len = 0x8000000000fff000;
Add the overflow validation now. |
| Substance3D - Modeler versions 1.22.2 and earlier are affected by an Integer Overflow or Wraparound vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. Scope is unchanged. |
| GDI+ Remote Code Execution Vulnerability |
| .NET and Visual Studio Remote Code Execution Vulnerability |
| Windows Graphics Component Elevation of Privilege Vulnerability |
| Windows Telephony Service Remote Code Execution Vulnerability |
| Windows Telephony Service Remote Code Execution Vulnerability |
| A vulnerability (CVE-2025-21172) exists in msdia140.dll due to integer overflow and heap-based overflow.
Per CWE-122: Heap-based Buffer Overflow, a heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc().
Per CWE-190: Integer Overflow or Wraparound, is when a product performs a calculation that can produce an integer overflow or wraparound when the logic assumes that the resulting value will always be larger than the original value. This occurs when an integer value is incremented to a value that is too large to store in the associated representation. When this occurs, the value may become a very small or negative number.
NOTE: This CVE affects only End Of Life (EOL) software components. The vendor, Microsoft, has indicated there will be no future updates nor support provided upon inquiry. |