| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| VMware ESXi, and Workstation contain a TOCTOU (Time-of-Check Time-of-Use) vulnerability that leads to an out-of-bounds write. A malicious actor with local administrative privileges on a virtual machine may exploit this issue to execute code as the virtual machine's VMX process running on the host. |
| A vulnerability was detected in Tomofun Furbo 360 up to FB0035_FW_036. Impacted is an unknown function of the component Audio Handler. Performing manipulation results in race condition. The attack is possible to be carried out remotely. The vendor was contacted early about this disclosure but did not respond in any way. |
| Windows User Profile Service Elevation of Privilege Vulnerability |
| Windows Kernel Elevation of Privilege Vulnerability |
| Windows Themes Remote Code Execution Vulnerability |
| A race condition could lead to a cross-origin container obtaining permissions of the top-level origin. This vulnerability affects Firefox < 128, Firefox ESR < 115.13, Thunderbird < 115.13, and Thunderbird < 128. |
| In the Linux kernel, the following vulnerability has been resolved:
dm-integrity: Avoid divide by zero in table status in Inline mode
In Inline mode, the journal is unused, and journal_sectors is zero.
Calculating the journal watermark requires dividing by journal_sectors,
which should be done only if the journal is configured.
Otherwise, a simple table query (dmsetup table) can cause OOPS.
This bug did not show on some systems, perhaps only due to
compiler optimization.
On my 32-bit testing machine, this reliably crashes with the following:
: Oops: divide error: 0000 [#1] PREEMPT SMP
: CPU: 0 UID: 0 PID: 2450 Comm: dmsetup Not tainted 6.14.0-rc2+ #959
: EIP: dm_integrity_status+0x2f8/0xab0 [dm_integrity]
... |
| A use after free vulnerability via race condition in MFC charger driver prior to SMR MAY-2021 Release 1 allows arbitrary write given a radio privilege is compromised. |
| A race condition in MFC charger driver prior to SMR MAY-2021 Release 1 allows local attackers to bypass signature check given a radio privilege is compromised. |
| A local file inclusion vulnerability was identified in automatic1111/stable-diffusion-webui, affecting version git 82a973c. This vulnerability allows an attacker to read arbitrary files on the system by sending a specially crafted request to the application. |
| Wazuh's File Integrity Monitoring (FIM), when configured with automatic threat removal, contains a time-of-check/time-of-use (TOCTOU) race condition that can allow a local, low-privileged attacker to cause the Wazuh service (running as NT AUTHORITY\SYSTEM) to delete attacker-controlled files or paths. The root cause is insufficient synchronization and lack of robust final-path validation in the threat-removal workflow: the agent records an active-response action and proceeds to perform deletion without guaranteeing the deletion target is the originally intended file. This can result in SYSTEM-level arbitrary file or folder deletion and consequent local privilege escalation. Wazuh made an attempted fix via pull request 8697 on 2025-07-10, but that change was incomplete. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix the recovery flow of the UMR QP
This patch addresses an issue in the recovery flow of the UMR QP,
ensuring tasks do not get stuck, as highlighted by the call trace [1].
During recovery, before transitioning the QP to the RESET state, the
software must wait for all outstanding WRs to complete.
Failing to do so can cause the firmware to skip sending some flushed
CQEs with errors and simply discard them upon the RESET, as per the IB
specification.
This race condition can result in lost CQEs and tasks becoming stuck.
To resolve this, the patch sends a final WR which serves only as a
barrier before moving the QP state to RESET.
Once a CQE is received for that final WR, it guarantees that no
outstanding WRs remain, making it safe to transition the QP to RESET and
subsequently back to RTS, restoring proper functionality.
Note:
For the barrier WR, we simply reuse the failed and ready WR.
Since the QP is in an error state, it will only receive
IB_WC_WR_FLUSH_ERR. However, as it serves only as a barrier we don't
care about its status.
[1]
INFO: task rdma_resource_l:1922 blocked for more than 120 seconds.
Tainted: G W 6.12.0-rc7+ #1626
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:rdma_resource_l state:D stack:0 pid:1922 tgid:1922 ppid:1369
flags:0x00004004
Call Trace:
<TASK>
__schedule+0x420/0xd30
schedule+0x47/0x130
schedule_timeout+0x280/0x300
? mark_held_locks+0x48/0x80
? lockdep_hardirqs_on_prepare+0xe5/0x1a0
wait_for_completion+0x75/0x130
mlx5r_umr_post_send_wait+0x3c2/0x5b0 [mlx5_ib]
? __pfx_mlx5r_umr_done+0x10/0x10 [mlx5_ib]
mlx5r_umr_revoke_mr+0x93/0xc0 [mlx5_ib]
__mlx5_ib_dereg_mr+0x299/0x520 [mlx5_ib]
? _raw_spin_unlock_irq+0x24/0x40
? wait_for_completion+0xfe/0x130
? rdma_restrack_put+0x63/0xe0 [ib_core]
ib_dereg_mr_user+0x5f/0x120 [ib_core]
? lock_release+0xc6/0x280
destroy_hw_idr_uobject+0x1d/0x60 [ib_uverbs]
uverbs_destroy_uobject+0x58/0x1d0 [ib_uverbs]
uobj_destroy+0x3f/0x70 [ib_uverbs]
ib_uverbs_cmd_verbs+0x3e4/0xbb0 [ib_uverbs]
? __pfx_uverbs_destroy_def_handler+0x10/0x10 [ib_uverbs]
? __lock_acquire+0x64e/0x2080
? mark_held_locks+0x48/0x80
? find_held_lock+0x2d/0xa0
? lock_acquire+0xc1/0x2f0
? ib_uverbs_ioctl+0xcb/0x170 [ib_uverbs]
? __fget_files+0xc3/0x1b0
ib_uverbs_ioctl+0xe7/0x170 [ib_uverbs]
? ib_uverbs_ioctl+0xcb/0x170 [ib_uverbs]
__x64_sys_ioctl+0x1b0/0xa70
do_syscall_64+0x6b/0x140
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f99c918b17b
RSP: 002b:00007ffc766d0468 EFLAGS: 00000246 ORIG_RAX:
0000000000000010
RAX: ffffffffffffffda RBX: 00007ffc766d0578 RCX:
00007f99c918b17b
RDX: 00007ffc766d0560 RSI: 00000000c0181b01 RDI:
0000000000000003
RBP: 00007ffc766d0540 R08: 00007f99c8f99010 R09:
000000000000bd7e
R10: 00007f99c94c1c70 R11: 0000000000000246 R12:
00007ffc766d0530
R13: 000000000000001c R14: 0000000040246a80 R15:
0000000000000000
</TASK> |
| nopCommerce through 4.90.1 does not offer locking for order placement. Thus there is a race condition with duplicate redeeming of gift cards. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix call trace observed during I/O with CMF enabled
The following was seen with CMF enabled:
BUG: using smp_processor_id() in preemptible
code: systemd-udevd/31711
kernel: caller is lpfc_update_cmf_cmd+0x214/0x420 [lpfc]
kernel: CPU: 12 PID: 31711 Comm: systemd-udevd
kernel: Call Trace:
kernel: <TASK>
kernel: dump_stack_lvl+0x44/0x57
kernel: check_preemption_disabled+0xbf/0xe0
kernel: lpfc_update_cmf_cmd+0x214/0x420 [lpfc]
kernel: lpfc_nvme_fcp_io_submit+0x23b4/0x4df0 [lpfc]
this_cpu_ptr() calls smp_processor_id() in a preemptible context.
Fix by using per_cpu_ptr() with raw_smp_processor_id() instead. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: synaptics - fix crash when enabling pass-through port
When enabling a pass-through port an interrupt might come before psmouse
driver binds to the pass-through port. However synaptics sub-driver
tries to access psmouse instance presumably associated with the
pass-through port to figure out if only 1 byte of response or entire
protocol packet needs to be forwarded to the pass-through port and may
crash if psmouse instance has not been attached to the port yet.
Fix the crash by introducing open() and close() methods for the port and
check if the port is open before trying to access psmouse instance.
Because psmouse calls serio_open() only after attaching psmouse instance
to serio port instance this prevents the potential crash. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix a race for an ODP MR which leads to CQE with error
This patch addresses a race condition for an ODP MR that can result in a
CQE with an error on the UMR QP.
During the __mlx5_ib_dereg_mr() flow, the following sequence of calls
occurs:
mlx5_revoke_mr()
mlx5r_umr_revoke_mr()
mlx5r_umr_post_send_wait()
At this point, the lkey is freed from the hardware's perspective.
However, concurrently, mlx5_ib_invalidate_range() might be triggered by
another task attempting to invalidate a range for the same freed lkey.
This task will:
- Acquire the umem_odp->umem_mutex lock.
- Call mlx5r_umr_update_xlt() on the UMR QP.
- Since the lkey has already been freed, this can lead to a CQE error,
causing the UMR QP to enter an error state [1].
To resolve this race condition, the umem_odp->umem_mutex lock is now also
acquired as part of the mlx5_revoke_mr() scope. Upon successful revoke,
we set umem_odp->private which points to that MR to NULL, preventing any
further invalidation attempts on its lkey.
[1] From dmesg:
infiniband rocep8s0f0: dump_cqe:277:(pid 0): WC error: 6, Message: memory bind operation error
cqe_dump: 00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
cqe_dump: 00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
cqe_dump: 00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
cqe_dump: 00000030: 00 00 00 00 08 00 78 06 25 00 11 b9 00 0e dd d2
WARNING: CPU: 15 PID: 1506 at drivers/infiniband/hw/mlx5/umr.c:394 mlx5r_umr_post_send_wait+0x15a/0x2b0 [mlx5_ib]
Modules linked in: ip6table_mangle ip6table_natip6table_filter ip6_tables iptable_mangle xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_umad ib_ipoib ib_cm mlx5_ib ib_uverbs ib_core fuse mlx5_core
CPU: 15 UID: 0 PID: 1506 Comm: ibv_rc_pingpong Not tainted 6.12.0-rc7+ #1626
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:mlx5r_umr_post_send_wait+0x15a/0x2b0 [mlx5_ib]
[..]
Call Trace:
<TASK>
mlx5r_umr_update_xlt+0x23c/0x3e0 [mlx5_ib]
mlx5_ib_invalidate_range+0x2e1/0x330 [mlx5_ib]
__mmu_notifier_invalidate_range_start+0x1e1/0x240
zap_page_range_single+0xf1/0x1a0
madvise_vma_behavior+0x677/0x6e0
do_madvise+0x1a2/0x4b0
__x64_sys_madvise+0x25/0x30
do_syscall_64+0x6b/0x140
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
mm/MADV_COLLAPSE: catch !none !huge !bad pmd lookups
In commit 34488399fa08 ("mm/madvise: add file and shmem support to
MADV_COLLAPSE") we make the following change to find_pmd_or_thp_or_none():
- if (!pmd_present(pmde))
- return SCAN_PMD_NULL;
+ if (pmd_none(pmde))
+ return SCAN_PMD_NONE;
This was for-use by MADV_COLLAPSE file/shmem codepaths, where
MADV_COLLAPSE might identify a pte-mapped hugepage, only to have
khugepaged race-in, free the pte table, and clear the pmd. Such codepaths
include:
A) If we find a suitably-aligned compound page of order HPAGE_PMD_ORDER
already in the pagecache.
B) In retract_page_tables(), if we fail to grab mmap_lock for the target
mm/address.
In these cases, collapse_pte_mapped_thp() really does expect a none (not
just !present) pmd, and we want to suitably identify that case separate
from the case where no pmd is found, or it's a bad-pmd (of course, many
things could happen once we drop mmap_lock, and the pmd could plausibly
undergo multiple transitions due to intervening fault, split, etc).
Regardless, the code is prepared install a huge-pmd only when the existing
pmd entry is either a genuine pte-table-mapping-pmd, or the none-pmd.
However, the commit introduces a logical hole; namely, that we've allowed
!none- && !huge- && !bad-pmds to be classified as genuine
pte-table-mapping-pmds. One such example that could leak through are swap
entries. The pmd values aren't checked again before use in
pte_offset_map_lock(), which is expecting nothing less than a genuine
pte-table-mapping-pmd.
We want to put back the !pmd_present() check (below the pmd_none() check),
but need to be careful to deal with subtleties in pmd transitions and
treatments by various arch.
The issue is that __split_huge_pmd_locked() temporarily clears the present
bit (or otherwise marks the entry as invalid), but pmd_present() and
pmd_trans_huge() still need to return true while the pmd is in this
transitory state. For example, x86's pmd_present() also checks the
_PAGE_PSE , riscv's version also checks the _PAGE_LEAF bit, and arm64 also
checks a PMD_PRESENT_INVALID bit.
Covering all 4 cases for x86 (all checks done on the same pmd value):
1) pmd_present() && pmd_trans_huge()
All we actually know here is that the PSE bit is set. Either:
a) We aren't racing with __split_huge_page(), and PRESENT or PROTNONE
is set.
=> huge-pmd
b) We are currently racing with __split_huge_page(). The danger here
is that we proceed as-if we have a huge-pmd, but really we are
looking at a pte-mapping-pmd. So, what is the risk of this
danger?
The only relevant path is:
madvise_collapse() -> collapse_pte_mapped_thp()
Where we might just incorrectly report back "success", when really
the memory isn't pmd-backed. This is fine, since split could
happen immediately after (actually) successful madvise_collapse().
So, it should be safe to just assume huge-pmd here.
2) pmd_present() && !pmd_trans_huge()
Either:
a) PSE not set and either PRESENT or PROTNONE is.
=> pte-table-mapping pmd (or PROT_NONE)
b) devmap. This routine can be called immediately after
unlocking/locking mmap_lock -- or called with no locks held (see
khugepaged_scan_mm_slot()), so previous VMA checks have since been
invalidated.
3) !pmd_present() && pmd_trans_huge()
Not possible.
4) !pmd_present() && !pmd_trans_huge()
Neither PRESENT nor PROTNONE set
=> not present
I've checked all archs that implement pmd_trans_huge() (arm64, riscv,
powerpc, longarch, x86, mips, s390) and this logic roughly translates
(though devmap treatment is unique to x86 and powerpc, and (3) doesn't
necessarily hold in general -- but that doesn't matter since
!pmd_present() always takes failure path).
Also, add a comment above find_pmd_or_thp_or_none()
---truncated--- |
| Windows Kernel Elevation of Privilege Vulnerability |
| Windows Search Remote Code Execution Vulnerability |
| Microsoft Outlook Security Feature Bypass Vulnerability |