| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
pmdomain: imx: gpcv2: Adjust delay after power up handshake
The udelay(5) is not enough, sometimes below kernel panic
still be triggered:
[ 4.012973] Kernel panic - not syncing: Asynchronous SError Interrupt
[ 4.012976] CPU: 2 UID: 0 PID: 186 Comm: (udev-worker) Not tainted 6.12.0-rc2-0.0.0-devel-00004-g8b1b79e88956 #1
[ 4.012982] Hardware name: Toradex Verdin iMX8M Plus WB on Dahlia Board (DT)
[ 4.012985] Call trace:
[...]
[ 4.013029] arm64_serror_panic+0x64/0x70
[ 4.013034] do_serror+0x3c/0x70
[ 4.013039] el1h_64_error_handler+0x30/0x54
[ 4.013046] el1h_64_error+0x64/0x68
[ 4.013050] clk_imx8mp_audiomix_runtime_resume+0x38/0x48
[ 4.013059] __genpd_runtime_resume+0x30/0x80
[ 4.013066] genpd_runtime_resume+0x114/0x29c
[ 4.013073] __rpm_callback+0x48/0x1e0
[ 4.013079] rpm_callback+0x68/0x80
[ 4.013084] rpm_resume+0x3bc/0x6a0
[ 4.013089] __pm_runtime_resume+0x50/0x9c
[ 4.013095] pm_runtime_get_suppliers+0x60/0x8c
[ 4.013101] __driver_probe_device+0x4c/0x14c
[ 4.013108] driver_probe_device+0x3c/0x120
[ 4.013114] __driver_attach+0xc4/0x200
[ 4.013119] bus_for_each_dev+0x7c/0xe0
[ 4.013125] driver_attach+0x24/0x30
[ 4.013130] bus_add_driver+0x110/0x240
[ 4.013135] driver_register+0x68/0x124
[ 4.013142] __platform_driver_register+0x24/0x30
[ 4.013149] sdma_driver_init+0x20/0x1000 [imx_sdma]
[ 4.013163] do_one_initcall+0x60/0x1e0
[ 4.013168] do_init_module+0x5c/0x21c
[ 4.013175] load_module+0x1a98/0x205c
[ 4.013181] init_module_from_file+0x88/0xd4
[ 4.013187] __arm64_sys_finit_module+0x258/0x350
[ 4.013194] invoke_syscall.constprop.0+0x50/0xe0
[ 4.013202] do_el0_svc+0xa8/0xe0
[ 4.013208] el0_svc+0x3c/0x140
[ 4.013215] el0t_64_sync_handler+0x120/0x12c
[ 4.013222] el0t_64_sync+0x190/0x194
[ 4.013228] SMP: stopping secondary CPUs
The correct way is to wait handshake, but it needs BUS clock of
BLK-CTL be enabled, which is in separate driver. So delay is the
only option here. The udelay(10) is a data got by experiment. |
| In the Linux kernel, the following vulnerability has been resolved:
block: Prevent potential deadlocks in zone write plug error recovery
Zone write plugging for handling writes to zones of a zoned block
device always execute a zone report whenever a write BIO to a zone
fails. The intent of this is to ensure that the tracking of a zone write
pointer is always correct to ensure that the alignment to a zone write
pointer of write BIOs can be checked on submission and that we can
always correctly emulate zone append operations using regular write
BIOs.
However, this error recovery scheme introduces a potential deadlock if a
device queue freeze is initiated while BIOs are still plugged in a zone
write plug and one of these write operation fails. In such case, the
disk zone write plug error recovery work is scheduled and executes a
report zone. This in turn can result in a request allocation in the
underlying driver to issue the report zones command to the device. But
with the device queue freeze already started, this allocation will
block, preventing the report zone execution and the continuation of the
processing of the plugged BIOs. As plugged BIOs hold a queue usage
reference, the queue freeze itself will never complete, resulting in a
deadlock.
Avoid this problem by completely removing from the zone write plugging
code the use of report zones operations after a failed write operation,
instead relying on the device user to either execute a report zones,
reset the zone, finish the zone, or give up writing to the device (which
is a fairly common pattern for file systems which degrade to read-only
after write failures). This is not an unreasonnable requirement as all
well-behaved applications, FSes and device mapper already use report
zones to recover from write errors whenever possible by comparing the
current position of a zone write pointer with what their assumption
about the position is.
The changes to remove the automatic error recovery are as follows:
- Completely remove the error recovery work and its associated
resources (zone write plug list head, disk error list, and disk
zone_wplugs_work work struct). This also removes the functions
disk_zone_wplug_set_error() and disk_zone_wplug_clear_error().
- Change the BLK_ZONE_WPLUG_ERROR zone write plug flag into
BLK_ZONE_WPLUG_NEED_WP_UPDATE. This new flag is set for a zone write
plug whenever a write opration targetting the zone of the zone write
plug fails. This flag indicates that the zone write pointer offset is
not reliable and that it must be updated when the next report zone,
reset zone, finish zone or disk revalidation is executed.
- Modify blk_zone_write_plug_bio_endio() to set the
BLK_ZONE_WPLUG_NEED_WP_UPDATE flag for the target zone of a failed
write BIO.
- Modify the function disk_zone_wplug_set_wp_offset() to clear this
new flag, thus implementing recovery of a correct write pointer
offset with the reset (all) zone and finish zone operations.
- Modify blkdev_report_zones() to always use the disk_report_zones_cb()
callback so that disk_zone_wplug_sync_wp_offset() can be called for
any zone marked with the BLK_ZONE_WPLUG_NEED_WP_UPDATE flag.
This implements recovery of a correct write pointer offset for zone
write plugs marked with BLK_ZONE_WPLUG_NEED_WP_UPDATE and within
the range of the report zones operation executed by the user.
- Modify blk_revalidate_seq_zone() to call
disk_zone_wplug_sync_wp_offset() for all sequential write required
zones when a zoned block device is revalidated, thus always resolving
any inconsistency between the write pointer offset of zone write
plugs and the actual write pointer position of sequential zones. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: IDLETIMER: Fix for possible ABBA deadlock
Deletion of the last rule referencing a given idletimer may happen at
the same time as a read of its file in sysfs:
| ======================================================
| WARNING: possible circular locking dependency detected
| 6.12.0-rc7-01692-g5e9a28f41134-dirty #594 Not tainted
| ------------------------------------------------------
| iptables/3303 is trying to acquire lock:
| ffff8881057e04b8 (kn->active#48){++++}-{0:0}, at: __kernfs_remove+0x20
|
| but task is already holding lock:
| ffffffffa0249068 (list_mutex){+.+.}-{3:3}, at: idletimer_tg_destroy_v]
|
| which lock already depends on the new lock.
A simple reproducer is:
| #!/bin/bash
|
| while true; do
| iptables -A INPUT -i foo -j IDLETIMER --timeout 10 --label "testme"
| iptables -D INPUT -i foo -j IDLETIMER --timeout 10 --label "testme"
| done &
| while true; do
| cat /sys/class/xt_idletimer/timers/testme >/dev/null
| done
Avoid this by freeing list_mutex right after deleting the element from
the list, then continuing with the teardown. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: iso: Fix circular lock in iso_listen_bis
This fixes the circular locking dependency warning below, by
releasing the socket lock before enterning iso_listen_bis, to
avoid any potential deadlock with hdev lock.
[ 75.307983] ======================================================
[ 75.307984] WARNING: possible circular locking dependency detected
[ 75.307985] 6.12.0-rc6+ #22 Not tainted
[ 75.307987] ------------------------------------------------------
[ 75.307987] kworker/u81:2/2623 is trying to acquire lock:
[ 75.307988] ffff8fde1769da58 (sk_lock-AF_BLUETOOTH-BTPROTO_ISO)
at: iso_connect_cfm+0x253/0x840 [bluetooth]
[ 75.308021]
but task is already holding lock:
[ 75.308022] ffff8fdd61a10078 (&hdev->lock)
at: hci_le_per_adv_report_evt+0x47/0x2f0 [bluetooth]
[ 75.308053]
which lock already depends on the new lock.
[ 75.308054]
the existing dependency chain (in reverse order) is:
[ 75.308055]
-> #1 (&hdev->lock){+.+.}-{3:3}:
[ 75.308057] __mutex_lock+0xad/0xc50
[ 75.308061] mutex_lock_nested+0x1b/0x30
[ 75.308063] iso_sock_listen+0x143/0x5c0 [bluetooth]
[ 75.308085] __sys_listen_socket+0x49/0x60
[ 75.308088] __x64_sys_listen+0x4c/0x90
[ 75.308090] x64_sys_call+0x2517/0x25f0
[ 75.308092] do_syscall_64+0x87/0x150
[ 75.308095] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 75.308098]
-> #0 (sk_lock-AF_BLUETOOTH-BTPROTO_ISO){+.+.}-{0:0}:
[ 75.308100] __lock_acquire+0x155e/0x25f0
[ 75.308103] lock_acquire+0xc9/0x300
[ 75.308105] lock_sock_nested+0x32/0x90
[ 75.308107] iso_connect_cfm+0x253/0x840 [bluetooth]
[ 75.308128] hci_connect_cfm+0x6c/0x190 [bluetooth]
[ 75.308155] hci_le_per_adv_report_evt+0x27b/0x2f0 [bluetooth]
[ 75.308180] hci_le_meta_evt+0xe7/0x200 [bluetooth]
[ 75.308206] hci_event_packet+0x21f/0x5c0 [bluetooth]
[ 75.308230] hci_rx_work+0x3ae/0xb10 [bluetooth]
[ 75.308254] process_one_work+0x212/0x740
[ 75.308256] worker_thread+0x1bd/0x3a0
[ 75.308258] kthread+0xe4/0x120
[ 75.308259] ret_from_fork+0x44/0x70
[ 75.308261] ret_from_fork_asm+0x1a/0x30
[ 75.308263]
other info that might help us debug this:
[ 75.308264] Possible unsafe locking scenario:
[ 75.308264] CPU0 CPU1
[ 75.308265] ---- ----
[ 75.308265] lock(&hdev->lock);
[ 75.308267] lock(sk_lock-
AF_BLUETOOTH-BTPROTO_ISO);
[ 75.308268] lock(&hdev->lock);
[ 75.308269] lock(sk_lock-AF_BLUETOOTH-BTPROTO_ISO);
[ 75.308270]
*** DEADLOCK ***
[ 75.308271] 4 locks held by kworker/u81:2/2623:
[ 75.308272] #0: ffff8fdd66e52148 ((wq_completion)hci0#2){+.+.}-{0:0},
at: process_one_work+0x443/0x740
[ 75.308276] #1: ffffafb488b7fe48 ((work_completion)(&hdev->rx_work)),
at: process_one_work+0x1ce/0x740
[ 75.308280] #2: ffff8fdd61a10078 (&hdev->lock){+.+.}-{3:3}
at: hci_le_per_adv_report_evt+0x47/0x2f0 [bluetooth]
[ 75.308304] #3: ffffffffb6ba4900 (rcu_read_lock){....}-{1:2},
at: hci_connect_cfm+0x29/0x190 [bluetooth] |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: iso: Fix circular lock in iso_conn_big_sync
This fixes the circular locking dependency warning below, by reworking
iso_sock_recvmsg, to ensure that the socket lock is always released
before calling a function that locks hdev.
[ 561.670344] ======================================================
[ 561.670346] WARNING: possible circular locking dependency detected
[ 561.670349] 6.12.0-rc6+ #26 Not tainted
[ 561.670351] ------------------------------------------------------
[ 561.670353] iso-tester/3289 is trying to acquire lock:
[ 561.670355] ffff88811f600078 (&hdev->lock){+.+.}-{3:3},
at: iso_conn_big_sync+0x73/0x260 [bluetooth]
[ 561.670405]
but task is already holding lock:
[ 561.670407] ffff88815af58258 (sk_lock-AF_BLUETOOTH){+.+.}-{0:0},
at: iso_sock_recvmsg+0xbf/0x500 [bluetooth]
[ 561.670450]
which lock already depends on the new lock.
[ 561.670452]
the existing dependency chain (in reverse order) is:
[ 561.670453]
-> #2 (sk_lock-AF_BLUETOOTH){+.+.}-{0:0}:
[ 561.670458] lock_acquire+0x7c/0xc0
[ 561.670463] lock_sock_nested+0x3b/0xf0
[ 561.670467] bt_accept_dequeue+0x1a5/0x4d0 [bluetooth]
[ 561.670510] iso_sock_accept+0x271/0x830 [bluetooth]
[ 561.670547] do_accept+0x3dd/0x610
[ 561.670550] __sys_accept4+0xd8/0x170
[ 561.670553] __x64_sys_accept+0x74/0xc0
[ 561.670556] x64_sys_call+0x17d6/0x25f0
[ 561.670559] do_syscall_64+0x87/0x150
[ 561.670563] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 561.670567]
-> #1 (sk_lock-AF_BLUETOOTH-BTPROTO_ISO){+.+.}-{0:0}:
[ 561.670571] lock_acquire+0x7c/0xc0
[ 561.670574] lock_sock_nested+0x3b/0xf0
[ 561.670577] iso_sock_listen+0x2de/0xf30 [bluetooth]
[ 561.670617] __sys_listen_socket+0xef/0x130
[ 561.670620] __x64_sys_listen+0xe1/0x190
[ 561.670623] x64_sys_call+0x2517/0x25f0
[ 561.670626] do_syscall_64+0x87/0x150
[ 561.670629] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 561.670632]
-> #0 (&hdev->lock){+.+.}-{3:3}:
[ 561.670636] __lock_acquire+0x32ad/0x6ab0
[ 561.670639] lock_acquire.part.0+0x118/0x360
[ 561.670642] lock_acquire+0x7c/0xc0
[ 561.670644] __mutex_lock+0x18d/0x12f0
[ 561.670647] mutex_lock_nested+0x1b/0x30
[ 561.670651] iso_conn_big_sync+0x73/0x260 [bluetooth]
[ 561.670687] iso_sock_recvmsg+0x3e9/0x500 [bluetooth]
[ 561.670722] sock_recvmsg+0x1d5/0x240
[ 561.670725] sock_read_iter+0x27d/0x470
[ 561.670727] vfs_read+0x9a0/0xd30
[ 561.670731] ksys_read+0x1a8/0x250
[ 561.670733] __x64_sys_read+0x72/0xc0
[ 561.670736] x64_sys_call+0x1b12/0x25f0
[ 561.670738] do_syscall_64+0x87/0x150
[ 561.670741] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 561.670744]
other info that might help us debug this:
[ 561.670745] Chain exists of:
&hdev->lock --> sk_lock-AF_BLUETOOTH-BTPROTO_ISO --> sk_lock-AF_BLUETOOTH
[ 561.670751] Possible unsafe locking scenario:
[ 561.670753] CPU0 CPU1
[ 561.670754] ---- ----
[ 561.670756] lock(sk_lock-AF_BLUETOOTH);
[ 561.670758] lock(sk_lock
AF_BLUETOOTH-BTPROTO_ISO);
[ 561.670761] lock(sk_lock-AF_BLUETOOTH);
[ 561.670764] lock(&hdev->lock);
[ 561.670767]
*** DEADLOCK *** |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't take dev_replace rwsem on task already holding it
Running fstests btrfs/011 with MKFS_OPTIONS="-O rst" to force the usage of
the RAID stripe-tree, we get the following splat from lockdep:
BTRFS info (device sdd): dev_replace from /dev/sdd (devid 1) to /dev/sdb started
============================================
WARNING: possible recursive locking detected
6.11.0-rc3-btrfs-for-next #599 Not tainted
--------------------------------------------
btrfs/2326 is trying to acquire lock:
ffff88810f215c98 (&fs_info->dev_replace.rwsem){++++}-{3:3}, at: btrfs_map_block+0x39f/0x2250
but task is already holding lock:
ffff88810f215c98 (&fs_info->dev_replace.rwsem){++++}-{3:3}, at: btrfs_map_block+0x39f/0x2250
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&fs_info->dev_replace.rwsem);
lock(&fs_info->dev_replace.rwsem);
*** DEADLOCK ***
May be due to missing lock nesting notation
1 lock held by btrfs/2326:
#0: ffff88810f215c98 (&fs_info->dev_replace.rwsem){++++}-{3:3}, at: btrfs_map_block+0x39f/0x2250
stack backtrace:
CPU: 1 UID: 0 PID: 2326 Comm: btrfs Not tainted 6.11.0-rc3-btrfs-for-next #599
Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
Call Trace:
<TASK>
dump_stack_lvl+0x5b/0x80
__lock_acquire+0x2798/0x69d0
? __pfx___lock_acquire+0x10/0x10
? __pfx___lock_acquire+0x10/0x10
lock_acquire+0x19d/0x4a0
? btrfs_map_block+0x39f/0x2250
? __pfx_lock_acquire+0x10/0x10
? find_held_lock+0x2d/0x110
? lock_is_held_type+0x8f/0x100
down_read+0x8e/0x440
? btrfs_map_block+0x39f/0x2250
? __pfx_down_read+0x10/0x10
? do_raw_read_unlock+0x44/0x70
? _raw_read_unlock+0x23/0x40
btrfs_map_block+0x39f/0x2250
? btrfs_dev_replace_by_ioctl+0xd69/0x1d00
? btrfs_bio_counter_inc_blocked+0xd9/0x2e0
? __kasan_slab_alloc+0x6e/0x70
? __pfx_btrfs_map_block+0x10/0x10
? __pfx_btrfs_bio_counter_inc_blocked+0x10/0x10
? kmem_cache_alloc_noprof+0x1f2/0x300
? mempool_alloc_noprof+0xed/0x2b0
btrfs_submit_chunk+0x28d/0x17e0
? __pfx_btrfs_submit_chunk+0x10/0x10
? bvec_alloc+0xd7/0x1b0
? bio_add_folio+0x171/0x270
? __pfx_bio_add_folio+0x10/0x10
? __kasan_check_read+0x20/0x20
btrfs_submit_bio+0x37/0x80
read_extent_buffer_pages+0x3df/0x6c0
btrfs_read_extent_buffer+0x13e/0x5f0
read_tree_block+0x81/0xe0
read_block_for_search+0x4bd/0x7a0
? __pfx_read_block_for_search+0x10/0x10
btrfs_search_slot+0x78d/0x2720
? __pfx_btrfs_search_slot+0x10/0x10
? lock_is_held_type+0x8f/0x100
? kasan_save_track+0x14/0x30
? __kasan_slab_alloc+0x6e/0x70
? kmem_cache_alloc_noprof+0x1f2/0x300
btrfs_get_raid_extent_offset+0x181/0x820
? __pfx_lock_acquire+0x10/0x10
? __pfx_btrfs_get_raid_extent_offset+0x10/0x10
? down_read+0x194/0x440
? __pfx_down_read+0x10/0x10
? do_raw_read_unlock+0x44/0x70
? _raw_read_unlock+0x23/0x40
btrfs_map_block+0x5b5/0x2250
? __pfx_btrfs_map_block+0x10/0x10
scrub_submit_initial_read+0x8fe/0x11b0
? __pfx_scrub_submit_initial_read+0x10/0x10
submit_initial_group_read+0x161/0x3a0
? lock_release+0x20e/0x710
? __pfx_submit_initial_group_read+0x10/0x10
? __pfx_lock_release+0x10/0x10
scrub_simple_mirror.isra.0+0x3eb/0x580
scrub_stripe+0xe4d/0x1440
? lock_release+0x20e/0x710
? __pfx_scrub_stripe+0x10/0x10
? __pfx_lock_release+0x10/0x10
? do_raw_read_unlock+0x44/0x70
? _raw_read_unlock+0x23/0x40
scrub_chunk+0x257/0x4a0
scrub_enumerate_chunks+0x64c/0xf70
? __mutex_unlock_slowpath+0x147/0x5f0
? __pfx_scrub_enumerate_chunks+0x10/0x10
? bit_wait_timeout+0xb0/0x170
? __up_read+0x189/0x700
? scrub_workers_get+0x231/0x300
? up_write+0x490/0x4f0
btrfs_scrub_dev+0x52e/0xcd0
? create_pending_snapshots+0x230/0x250
? __pfx_btrfs_scrub_dev+0x10/0x10
btrfs_dev_replace_by_ioctl+0xd69/0x1d00
? lock_acquire+0x19d/0x4a0
? __pfx_btrfs_dev_replace_by_ioctl+0x10/0x10
?
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
pinmux: Use sequential access to access desc->pinmux data
When two client of the same gpio call pinctrl_select_state() for the
same functionality, we are seeing NULL pointer issue while accessing
desc->mux_owner.
Let's say two processes A, B executing in pin_request() for the same pin
and process A updates the desc->mux_usecount but not yet updated the
desc->mux_owner while process B see the desc->mux_usecount which got
updated by A path and further executes strcmp and while accessing
desc->mux_owner it crashes with NULL pointer.
Serialize the access to mux related setting with a mutex lock.
cpu0 (process A) cpu1(process B)
pinctrl_select_state() { pinctrl_select_state() {
pin_request() { pin_request() {
...
....
} else {
desc->mux_usecount++;
desc->mux_usecount && strcmp(desc->mux_owner, owner)) {
if (desc->mux_usecount > 1)
return 0;
desc->mux_owner = owner;
} } |
| In the Linux kernel, the following vulnerability has been resolved:
ptdma: pt_core_execute_cmd() should use spinlock
The interrupt handler (pt_core_irq_handler()) of the ptdma
driver can be called from interrupt context. The code flow
in this function can lead down to pt_core_execute_cmd() which
will attempt to grab a mutex, which is not appropriate in
interrupt context and ultimately leads to a kernel panic.
The fix here changes this mutex to a spinlock, which has
been verified to resolve the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/swapfile: add cond_resched() in get_swap_pages()
The softlockup still occurs in get_swap_pages() under memory pressure. 64
CPU cores, 64GB memory, and 28 zram devices, the disksize of each zram
device is 50MB with same priority as si. Use the stress-ng tool to
increase memory pressure, causing the system to oom frequently.
The plist_for_each_entry_safe() loops in get_swap_pages() could reach tens
of thousands of times to find available space (extreme case:
cond_resched() is not called in scan_swap_map_slots()). Let's add
cond_resched() into get_swap_pages() when failed to find available space
to avoid softlockup. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock between concurrent dio writes when low on free data space
When reserving data space for a direct IO write we can end up deadlocking
if we have multiple tasks attempting a write to the same file range, there
are multiple extents covered by that file range, we are low on available
space for data and the writes don't expand the inode's i_size.
The deadlock can happen like this:
1) We have a file with an i_size of 1M, at offset 0 it has an extent with
a size of 128K and at offset 128K it has another extent also with a
size of 128K;
2) Task A does a direct IO write against file range [0, 256K), and because
the write is within the i_size boundary, it takes the inode's lock (VFS
level) in shared mode;
3) Task A locks the file range [0, 256K) at btrfs_dio_iomap_begin(), and
then gets the extent map for the extent covering the range [0, 128K).
At btrfs_get_blocks_direct_write(), it creates an ordered extent for
that file range ([0, 128K));
4) Before returning from btrfs_dio_iomap_begin(), it unlocks the file
range [0, 256K);
5) Task A executes btrfs_dio_iomap_begin() again, this time for the file
range [128K, 256K), and locks the file range [128K, 256K);
6) Task B starts a direct IO write against file range [0, 256K) as well.
It also locks the inode in shared mode, as it's within the i_size limit,
and then tries to lock file range [0, 256K). It is able to lock the
subrange [0, 128K) but then blocks waiting for the range [128K, 256K),
as it is currently locked by task A;
7) Task A enters btrfs_get_blocks_direct_write() and tries to reserve data
space. Because we are low on available free space, it triggers the
async data reclaim task, and waits for it to reserve data space;
8) The async reclaim task decides to wait for all existing ordered extents
to complete (through btrfs_wait_ordered_roots()).
It finds the ordered extent previously created by task A for the file
range [0, 128K) and waits for it to complete;
9) The ordered extent for the file range [0, 128K) can not complete
because it blocks at btrfs_finish_ordered_io() when trying to lock the
file range [0, 128K).
This results in a deadlock, because:
- task B is holding the file range [0, 128K) locked, waiting for the
range [128K, 256K) to be unlocked by task A;
- task A is holding the file range [128K, 256K) locked and it's waiting
for the async data reclaim task to satisfy its space reservation
request;
- the async data reclaim task is waiting for ordered extent [0, 128K)
to complete, but the ordered extent can not complete because the
file range [0, 128K) is currently locked by task B, which is waiting
on task A to unlock file range [128K, 256K) and task A waiting
on the async data reclaim task.
This results in a deadlock between 4 task: task A, task B, the async
data reclaim task and the task doing ordered extent completion (a work
queue task).
This type of deadlock can sporadically be triggered by the test case
generic/300 from fstests, and results in a stack trace like the following:
[12084.033689] INFO: task kworker/u16:7:123749 blocked for more than 241 seconds.
[12084.034877] Not tainted 5.18.0-rc2-btrfs-next-115 #1
[12084.035562] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[12084.036548] task:kworker/u16:7 state:D stack: 0 pid:123749 ppid: 2 flags:0x00004000
[12084.036554] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
[12084.036599] Call Trace:
[12084.036601] <TASK>
[12084.036606] __schedule+0x3cb/0xed0
[12084.036616] schedule+0x4e/0xb0
[12084.036620] btrfs_start_ordered_extent+0x109/0x1c0 [btrfs]
[12084.036651] ? prepare_to_wait_exclusive+0xc0/0xc0
[12084.036659] btrfs_run_ordered_extent_work+0x1a/0x30 [btrfs]
[12084.036688] btrfs_work_helper+0xf8/0x400 [btrfs]
[12084.0367
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Move cfg_log_verbose check before calling lpfc_dmp_dbg()
In an attempt to log message 0126 with LOG_TRACE_EVENT, the following hard
lockup call trace hangs the system.
Call Trace:
_raw_spin_lock_irqsave+0x32/0x40
lpfc_dmp_dbg.part.32+0x28/0x220 [lpfc]
lpfc_cmpl_els_fdisc+0x145/0x460 [lpfc]
lpfc_sli_cancel_jobs+0x92/0xd0 [lpfc]
lpfc_els_flush_cmd+0x43c/0x670 [lpfc]
lpfc_els_flush_all_cmd+0x37/0x60 [lpfc]
lpfc_sli4_async_event_proc+0x956/0x1720 [lpfc]
lpfc_do_work+0x1485/0x1d70 [lpfc]
kthread+0x112/0x130
ret_from_fork+0x1f/0x40
Kernel panic - not syncing: Hard LOCKUP
The same CPU tries to claim the phba->port_list_lock twice.
Move the cfg_log_verbose checks as part of the lpfc_printf_vlog() and
lpfc_printf_log() macros before calling lpfc_dmp_dbg(). There is no need
to take the phba->port_list_lock within lpfc_dmp_dbg(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix SCSI I/O completion and abort handler deadlock
During stress I/O tests with 500+ vports, hard LOCKUP call traces are
observed.
CPU A:
native_queued_spin_lock_slowpath+0x192
_raw_spin_lock_irqsave+0x32
lpfc_handle_fcp_err+0x4c6
lpfc_fcp_io_cmd_wqe_cmpl+0x964
lpfc_sli4_fp_handle_cqe+0x266
__lpfc_sli4_process_cq+0x105
__lpfc_sli4_hba_process_cq+0x3c
lpfc_cq_poll_hdler+0x16
irq_poll_softirq+0x76
__softirqentry_text_start+0xe4
irq_exit+0xf7
do_IRQ+0x7f
CPU B:
native_queued_spin_lock_slowpath+0x5b
_raw_spin_lock+0x1c
lpfc_abort_handler+0x13e
scmd_eh_abort_handler+0x85
process_one_work+0x1a7
worker_thread+0x30
kthread+0x112
ret_from_fork+0x1f
Diagram of lockup:
CPUA CPUB
---- ----
lpfc_cmd->buf_lock
phba->hbalock
lpfc_cmd->buf_lock
phba->hbalock
Fix by reordering the taking of the lpfc_cmd->buf_lock and phba->hbalock in
lpfc_abort_handler routine so that it tries to take the lpfc_cmd->buf_lock
first before phba->hbalock. |
| In the Linux kernel, the following vulnerability has been resolved:
loop: implement ->free_disk
Ensure that the lo_device which is stored in the gendisk private
data is valid until the gendisk is freed. Currently the loop driver
uses a lot of effort to make sure a device is not freed when it is
still in use, but to to fix a potential deadlock this will be relaxed
a bit soon. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mediatek: vcodec: prevent kernel crash when rmmod mtk-vcodec-dec.ko
If the driver support subdev mode, the parameter "dev->pm.dev" will be
NULL in mtk_vcodec_dec_remove. Kernel will crash when try to rmmod
mtk-vcodec-dec.ko.
[ 4380.702726] pc : do_raw_spin_trylock+0x4/0x80
[ 4380.707075] lr : _raw_spin_lock_irq+0x90/0x14c
[ 4380.711509] sp : ffff80000819bc10
[ 4380.714811] x29: ffff80000819bc10 x28: ffff3600c03e4000 x27: 0000000000000000
[ 4380.721934] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
[ 4380.729057] x23: ffff3600c0f34930 x22: ffffd5e923549000 x21: 0000000000000220
[ 4380.736179] x20: 0000000000000208 x19: ffffd5e9213e8ebc x18: 0000000000000020
[ 4380.743298] x17: 0000002000000000 x16: ffffd5e9213e8e90 x15: 696c346f65646976
[ 4380.750420] x14: 0000000000000000 x13: 0000000000000001 x12: 0000000000000040
[ 4380.757542] x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000
[ 4380.764664] x8 : 0000000000000000 x7 : ffff3600c7273ae8 x6 : ffffd5e9213e8ebc
[ 4380.771786] x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000
[ 4380.778908] x2 : 0000000000000000 x1 : ffff3600c03e4000 x0 : 0000000000000208
[ 4380.786031] Call trace:
[ 4380.788465] do_raw_spin_trylock+0x4/0x80
[ 4380.792462] __pm_runtime_disable+0x2c/0x1b0
[ 4380.796723] mtk_vcodec_dec_remove+0x5c/0xa0 [mtk_vcodec_dec]
[ 4380.802466] platform_remove+0x2c/0x60
[ 4380.806204] __device_release_driver+0x194/0x250
[ 4380.810810] driver_detach+0xc8/0x15c
[ 4380.814462] bus_remove_driver+0x5c/0xb0
[ 4380.818375] driver_unregister+0x34/0x64
[ 4380.822288] platform_driver_unregister+0x18/0x24
[ 4380.826979] mtk_vcodec_dec_driver_exit+0x1c/0x888 [mtk_vcodec_dec]
[ 4380.833240] __arm64_sys_delete_module+0x190/0x224
[ 4380.838020] invoke_syscall+0x48/0x114
[ 4380.841760] el0_svc_common.constprop.0+0x60/0x11c
[ 4380.846540] do_el0_svc+0x28/0x90
[ 4380.849844] el0_svc+0x4c/0x100
[ 4380.852975] el0t_64_sync_handler+0xec/0xf0
[ 4380.857148] el0t_64_sync+0x190/0x194
[ 4380.860801] Code: 94431515 17ffffca d503201f d503245f (b9400004) |
| In the Linux kernel, the following vulnerability has been resolved:
nvdimm: Fix firmware activation deadlock scenarios
Lockdep reports the following deadlock scenarios for CXL root device
power-management, device_prepare(), operations, and device_shutdown()
operations for 'nd_region' devices:
Chain exists of:
&nvdimm_region_key --> &nvdimm_bus->reconfig_mutex --> system_transition_mutex
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(system_transition_mutex);
lock(&nvdimm_bus->reconfig_mutex);
lock(system_transition_mutex);
lock(&nvdimm_region_key);
Chain exists of:
&cxl_nvdimm_bridge_key --> acpi_scan_lock --> &cxl_root_key
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&cxl_root_key);
lock(acpi_scan_lock);
lock(&cxl_root_key);
lock(&cxl_nvdimm_bridge_key);
These stem from holding nvdimm_bus_lock() over hibernate_quiet_exec()
which walks the entire system device topology taking device_lock() along
the way. The nvdimm_bus_lock() is protecting against unregistration,
multiple simultaneous ops callers, and preventing activate_show() from
racing activate_store(). For the first 2, the lock is redundant.
Unregistration already flushes all ops users, and sysfs already prevents
multiple threads to be active in an ops handler at the same time. For
the last userspace should already be waiting for its last
activate_store() to complete, and does not need activate_show() to flush
the write side, so this lock usage can be deleted in these attributes. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: fix deadlock caused by calling printk() under tty_port->lock
pty_write() invokes kmalloc() which may invoke a normal printk() to print
failure message. This can cause a deadlock in the scenario reported by
syz-bot below:
CPU0 CPU1 CPU2
---- ---- ----
lock(console_owner);
lock(&port_lock_key);
lock(&port->lock);
lock(&port_lock_key);
lock(&port->lock);
lock(console_owner);
As commit dbdda842fe96 ("printk: Add console owner and waiter logic to
load balance console writes") said, such deadlock can be prevented by
using printk_deferred() in kmalloc() (which is invoked in the section
guarded by the port->lock). But there are too many printk() on the
kmalloc() path, and kmalloc() can be called from anywhere, so changing
printk() to printk_deferred() is too complicated and inelegant.
Therefore, this patch chooses to specify __GFP_NOWARN to kmalloc(), so
that printk() will not be called, and this deadlock problem can be
avoided.
Syzbot reported the following lockdep error:
======================================================
WARNING: possible circular locking dependency detected
5.4.143-00237-g08ccc19a-dirty #10 Not tainted
------------------------------------------------------
syz-executor.4/29420 is trying to acquire lock:
ffffffff8aedb2a0 (console_owner){....}-{0:0}, at: console_trylock_spinning kernel/printk/printk.c:1752 [inline]
ffffffff8aedb2a0 (console_owner){....}-{0:0}, at: vprintk_emit+0x2ca/0x470 kernel/printk/printk.c:2023
but task is already holding lock:
ffff8880119c9158 (&port->lock){-.-.}-{2:2}, at: pty_write+0xf4/0x1f0 drivers/tty/pty.c:120
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (&port->lock){-.-.}-{2:2}:
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0x35/0x50 kernel/locking/spinlock.c:159
tty_port_tty_get drivers/tty/tty_port.c:288 [inline] <-- lock(&port->lock);
tty_port_default_wakeup+0x1d/0xb0 drivers/tty/tty_port.c:47
serial8250_tx_chars+0x530/0xa80 drivers/tty/serial/8250/8250_port.c:1767
serial8250_handle_irq.part.0+0x31f/0x3d0 drivers/tty/serial/8250/8250_port.c:1854
serial8250_handle_irq drivers/tty/serial/8250/8250_port.c:1827 [inline] <-- lock(&port_lock_key);
serial8250_default_handle_irq+0xb2/0x220 drivers/tty/serial/8250/8250_port.c:1870
serial8250_interrupt+0xfd/0x200 drivers/tty/serial/8250/8250_core.c:126
__handle_irq_event_percpu+0x109/0xa50 kernel/irq/handle.c:156
[...]
-> #1 (&port_lock_key){-.-.}-{2:2}:
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0x35/0x50 kernel/locking/spinlock.c:159
serial8250_console_write+0x184/0xa40 drivers/tty/serial/8250/8250_port.c:3198
<-- lock(&port_lock_key);
call_console_drivers kernel/printk/printk.c:1819 [inline]
console_unlock+0x8cb/0xd00 kernel/printk/printk.c:2504
vprintk_emit+0x1b5/0x470 kernel/printk/printk.c:2024 <-- lock(console_owner);
vprintk_func+0x8d/0x250 kernel/printk/printk_safe.c:394
printk+0xba/0xed kernel/printk/printk.c:2084
register_console+0x8b3/0xc10 kernel/printk/printk.c:2829
univ8250_console_init+0x3a/0x46 drivers/tty/serial/8250/8250_core.c:681
console_init+0x49d/0x6d3 kernel/printk/printk.c:2915
start_kernel+0x5e9/0x879 init/main.c:713
secondary_startup_64+0xa4/0xb0 arch/x86/kernel/head_64.S:241
-> #0 (console_owner){....}-{0:0}:
[...]
lock_acquire+0x127/0x340 kernel/locking/lockdep.c:4734
console_trylock_spinning kernel/printk/printk.c:1773
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
block: Fix potential deadlock in blk_ia_range_sysfs_show()
When being read, a sysfs attribute is already protected against removal
with the kobject node active reference counter. As a result, in
blk_ia_range_sysfs_show(), there is no need to take the queue sysfs
lock when reading the value of a range attribute. Using the queue sysfs
lock in this function creates a potential deadlock situation with the
disk removal, something that a lockdep signals with a splat when the
device is removed:
[ 760.703551] Possible unsafe locking scenario:
[ 760.703551]
[ 760.703554] CPU0 CPU1
[ 760.703556] ---- ----
[ 760.703558] lock(&q->sysfs_lock);
[ 760.703565] lock(kn->active#385);
[ 760.703573] lock(&q->sysfs_lock);
[ 760.703579] lock(kn->active#385);
[ 760.703587]
[ 760.703587] *** DEADLOCK ***
Solve this by removing the mutex_lock()/mutex_unlock() calls from
blk_ia_range_sysfs_show(). |
| In the Linux kernel, the following vulnerability has been resolved:
driver core: fix deadlock in __device_attach
In __device_attach function, The lock holding logic is as follows:
...
__device_attach
device_lock(dev) // get lock dev
async_schedule_dev(__device_attach_async_helper, dev); // func
async_schedule_node
async_schedule_node_domain(func)
entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC);
/* when fail or work limit, sync to execute func, but
__device_attach_async_helper will get lock dev as
well, which will lead to A-A deadlock. */
if (!entry || atomic_read(&entry_count) > MAX_WORK) {
func;
else
queue_work_node(node, system_unbound_wq, &entry->work)
device_unlock(dev)
As shown above, when it is allowed to do async probes, because of
out of memory or work limit, async work is not allowed, to do
sync execute instead. it will lead to A-A deadlock because of
__device_attach_async_helper getting lock dev.
To fix the deadlock, move the async_schedule_dev outside device_lock,
as we can see, in async_schedule_node_domain, the parameter of
queue_work_node is system_unbound_wq, so it can accept concurrent
operations. which will also not change the code logic, and will
not lead to deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
bcache: avoid journal no-space deadlock by reserving 1 journal bucket
The journal no-space deadlock was reported time to time. Such deadlock
can happen in the following situation.
When all journal buckets are fully filled by active jset with heavy
write I/O load, the cache set registration (after a reboot) will load
all active jsets and inserting them into the btree again (which is
called journal replay). If a journaled bkey is inserted into a btree
node and results btree node split, new journal request might be
triggered. For example, the btree grows one more level after the node
split, then the root node record in cache device super block will be
upgrade by bch_journal_meta() from bch_btree_set_root(). But there is no
space in journal buckets, the journal replay has to wait for new journal
bucket to be reclaimed after at least one journal bucket replayed. This
is one example that how the journal no-space deadlock happens.
The solution to avoid the deadlock is to reserve 1 journal bucket in
run time, and only permit the reserved journal bucket to be used during
cache set registration procedure for things like journal replay. Then
the journal space will never be fully filled, there is no chance for
journal no-space deadlock to happen anymore.
This patch adds a new member "bool do_reserve" in struct journal, it is
inititalized to 0 (false) when struct journal is allocated, and set to
1 (true) by bch_journal_space_reserve() when all initialization done in
run_cache_set(). In the run time when journal_reclaim() tries to
allocate a new journal bucket, free_journal_buckets() is called to check
whether there are enough free journal buckets to use. If there is only
1 free journal bucket and journal->do_reserve is 1 (true), the last
bucket is reserved and free_journal_buckets() will return 0 to indicate
no free journal bucket. Then journal_reclaim() will give up, and try
next time to see whetheer there is free journal bucket to allocate. By
this method, there is always 1 jouranl bucket reserved in run time.
During the cache set registration, journal->do_reserve is 0 (false), so
the reserved journal bucket can be used to avoid the no-space deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix sleeping function called from invalid context on RT kernel
When setting bootparams="trace_event=initcall:initcall_start tp_printk=1" in the
cmdline, the output_printk() was called, and the spin_lock_irqsave() was called in the
atomic and irq disable interrupt context suitation. On the PREEMPT_RT kernel,
these locks are replaced with sleepable rt-spinlock, so the stack calltrace will
be triggered.
Fix it by raw_spin_lock_irqsave when PREEMPT_RT and "trace_event=initcall:initcall_start
tp_printk=1" enabled.
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0
preempt_count: 2, expected: 0
RCU nest depth: 0, expected: 0
Preemption disabled at:
[<ffffffff8992303e>] try_to_wake_up+0x7e/0xba0
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.17.1-rt17+ #19 34c5812404187a875f32bee7977f7367f9679ea7
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x60/0x8c
dump_stack+0x10/0x12
__might_resched.cold+0x11d/0x155
rt_spin_lock+0x40/0x70
trace_event_buffer_commit+0x2fa/0x4c0
? map_vsyscall+0x93/0x93
trace_event_raw_event_initcall_start+0xbe/0x110
? perf_trace_initcall_finish+0x210/0x210
? probe_sched_wakeup+0x34/0x40
? ttwu_do_wakeup+0xda/0x310
? trace_hardirqs_on+0x35/0x170
? map_vsyscall+0x93/0x93
do_one_initcall+0x217/0x3c0
? trace_event_raw_event_initcall_level+0x170/0x170
? push_cpu_stop+0x400/0x400
? cblist_init_generic+0x241/0x290
kernel_init_freeable+0x1ac/0x347
? _raw_spin_unlock_irq+0x65/0x80
? rest_init+0xf0/0xf0
kernel_init+0x1e/0x150
ret_from_fork+0x22/0x30
</TASK> |