CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Serialization). Supported versions that are affected are Java SE: 6u181, 7u171, 8u162 and 10; Java SE Embedded: 8u161; JRockit: R28.3.17. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L). |
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: AWT). Supported versions that are affected are Java SE: 6u181, 7u171, 8u162 and 10; Java SE Embedded: 8u161; JRockit: R28.3.17. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L). |
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Concurrency). Supported versions that are affected are Java SE: 7u171, 8u162 and 10; Java SE Embedded: 8u161; JRockit: R28.3.17. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: Applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L). |
In the Linux kernel, the following vulnerability has been resolved:
dm crypt: add cond_resched() to dmcrypt_write()
The loop in dmcrypt_write may be running for unbounded amount of time,
thus we need cond_resched() in it.
This commit fixes the following warning:
[ 3391.153255][ C12] watchdog: BUG: soft lockup - CPU#12 stuck for 23s! [dmcrypt_write/2:2897]
...
[ 3391.387210][ C12] Call trace:
[ 3391.390338][ C12] blk_attempt_bio_merge.part.6+0x38/0x158
[ 3391.395970][ C12] blk_attempt_plug_merge+0xc0/0x1b0
[ 3391.401085][ C12] blk_mq_submit_bio+0x398/0x550
[ 3391.405856][ C12] submit_bio_noacct+0x308/0x380
[ 3391.410630][ C12] dmcrypt_write+0x1e4/0x208 [dm_crypt]
[ 3391.416005][ C12] kthread+0x130/0x138
[ 3391.419911][ C12] ret_from_fork+0x10/0x18 |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction |
curl < 7.84.0 supports "chained" HTTP compression algorithms, meaning that a serverresponse can be compressed multiple times and potentially with different algorithms. The number of acceptable "links" in this "decompression chain" was unbounded, allowing a malicious server to insert a virtually unlimited number of compression steps.The use of such a decompression chain could result in a "malloc bomb", makingcurl end up spending enormous amounts of allocated heap memory, or trying toand returning out of memory errors. |
A malicious server can serve excessive amounts of `Set-Cookie:` headers in a HTTP response to curl and curl < 7.84.0 stores all of them. A sufficiently large amount of (big) cookies make subsequent HTTP requests to this, or other servers to which the cookies match, create requests that become larger than the threshold that curl uses internally to avoid sending crazy large requests (1048576 bytes) and instead returns an error.This denial state might remain for as long as the same cookies are kept, match and haven't expired. Due to cookie matching rules, a server on `foo.example.com` can set cookies that also would match for `bar.example.com`, making it it possible for a "sister server" to effectively cause a denial of service for a sibling site on the same second level domain using this method. |
An issue has been discovered in GitLab EE affecting all versions from 13.3.0 prior to 16.6.7, 16.7 prior to 16.7.5, and 16.8 prior to 16.8.2 which allows an attacker to do a resource exhaustion using GraphQL `vulnerabilitiesCountByDay` |
A lack of length validation in GitLab CE/EE affecting all versions from 8.3 before 15.10.8, 15.11 before 15.11.7, and 16.0 before 16.0.2 allows an authenticated attacker to create a large Issue description via GraphQL which, when repeatedly requested, saturates CPU usage. |
An issue has been discovered in GitLab affecting all versions starting from 15.2 before 16.1.5, all versions starting from 16.2 before 16.2.5, all versions starting from 16.3 before 16.3.1 in which the projects API pagination can be skipped, potentially leading to DoS on certain instances. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix double accounting race when btrfs_run_delalloc_range() failed
[BUG]
When running btrfs with block size (4K) smaller than page size (64K,
aarch64), there is a very high chance to crash the kernel at
generic/750, with the following messages:
(before the call traces, there are 3 extra debug messages added)
BTRFS warning (device dm-3): read-write for sector size 4096 with page size 65536 is experimental
BTRFS info (device dm-3): checking UUID tree
hrtimer: interrupt took 5451385 ns
BTRFS error (device dm-3): cow_file_range failed, root=4957 inode=257 start=1605632 len=69632: -28
BTRFS error (device dm-3): run_delalloc_nocow failed, root=4957 inode=257 start=1605632 len=69632: -28
BTRFS error (device dm-3): failed to run delalloc range, root=4957 ino=257 folio=1572864 submit_bitmap=8-15 start=1605632 len=69632: -28
------------[ cut here ]------------
WARNING: CPU: 2 PID: 3020984 at ordered-data.c:360 can_finish_ordered_extent+0x370/0x3b8 [btrfs]
CPU: 2 UID: 0 PID: 3020984 Comm: kworker/u24:1 Tainted: G OE 6.13.0-rc1-custom+ #89
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs]
pc : can_finish_ordered_extent+0x370/0x3b8 [btrfs]
lr : can_finish_ordered_extent+0x1ec/0x3b8 [btrfs]
Call trace:
can_finish_ordered_extent+0x370/0x3b8 [btrfs] (P)
can_finish_ordered_extent+0x1ec/0x3b8 [btrfs] (L)
btrfs_mark_ordered_io_finished+0x130/0x2b8 [btrfs]
extent_writepage+0x10c/0x3b8 [btrfs]
extent_write_cache_pages+0x21c/0x4e8 [btrfs]
btrfs_writepages+0x94/0x160 [btrfs]
do_writepages+0x74/0x190
filemap_fdatawrite_wbc+0x74/0xa0
start_delalloc_inodes+0x17c/0x3b0 [btrfs]
btrfs_start_delalloc_roots+0x17c/0x288 [btrfs]
shrink_delalloc+0x11c/0x280 [btrfs]
flush_space+0x288/0x328 [btrfs]
btrfs_async_reclaim_data_space+0x180/0x228 [btrfs]
process_one_work+0x228/0x680
worker_thread+0x1bc/0x360
kthread+0x100/0x118
ret_from_fork+0x10/0x20
---[ end trace 0000000000000000 ]---
BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1605632 OE len=16384 to_dec=16384 left=0
BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1622016 OE len=12288 to_dec=12288 left=0
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1634304 OE len=8192 to_dec=4096 left=0
CPU: 1 UID: 0 PID: 3286940 Comm: kworker/u24:3 Tainted: G W OE 6.13.0-rc1-custom+ #89
Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
Workqueue: btrfs_work_helper [btrfs] (btrfs-endio-write)
pstate: 404000c5 (nZcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : process_one_work+0x110/0x680
lr : worker_thread+0x1bc/0x360
Call trace:
process_one_work+0x110/0x680 (P)
worker_thread+0x1bc/0x360 (L)
worker_thread+0x1bc/0x360
kthread+0x100/0x118
ret_from_fork+0x10/0x20
Code: f84086a1 f9000fe1 53041c21 b9003361 (f9400661)
---[ end trace 0000000000000000 ]---
Kernel panic - not syncing: Oops: Fatal exception
SMP: stopping secondary CPUs
SMP: failed to stop secondary CPUs 2-3
Dumping ftrace buffer:
(ftrace buffer empty)
Kernel Offset: 0x275bb9540000 from 0xffff800080000000
PHYS_OFFSET: 0xffff8fbba0000000
CPU features: 0x100,00000070,00801250,8201720b
[CAUSE]
The above warning is triggered immediately after the delalloc range
failure, this happens in the following sequence:
- Range [1568K, 1636K) is dirty
1536K 1568K 1600K 1636K 1664K
| |/////////|////////| |
Where 1536K, 1600K and 1664K are page boundaries (64K page size)
- Enter extent_writepage() for page 1536K
- Enter run_delalloc_nocow() with locke
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
mm: huge_memory: use !CONFIG_64BIT to relax huge page alignment on 32 bit machines
Yves-Alexis Perez reported commit 4ef9ad19e176 ("mm: huge_memory: don't
force huge page alignment on 32 bit") didn't work for x86_32 [1]. It is
because x86_32 uses CONFIG_X86_32 instead of CONFIG_32BIT.
!CONFIG_64BIT should cover all 32 bit machines.
[1] https://lore.kernel.org/linux-mm/CAHbLzkr1LwH3pcTgM+aGQ31ip2bKqiqEQ8=FQB+t2c3dhNKNHA@mail.gmail.com/ |
In the Linux kernel, the following vulnerability has been resolved:
fbcon: always restore the old font data in fbcon_do_set_font()
Commit a5a923038d70 (fbdev: fbcon: Properly revert changes when
vc_resize() failed) started restoring old font data upon failure (of
vc_resize()). But it performs so only for user fonts. It means that the
"system"/internal fonts are not restored at all. So in result, the very
first call to fbcon_do_set_font() performs no restore at all upon
failing vc_resize().
This can be reproduced by Syzkaller to crash the system on the next
invocation of font_get(). It's rather hard to hit the allocation failure
in vc_resize() on the first font_set(), but not impossible. Esp. if
fault injection is used to aid the execution/failure. It was
demonstrated by Sirius:
BUG: unable to handle page fault for address: fffffffffffffff8
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD cb7b067 P4D cb7b067 PUD cb7d067 PMD 0
Oops: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 8007 Comm: poc Not tainted 6.7.0-g9d1694dc91ce #20
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:fbcon_get_font+0x229/0x800 drivers/video/fbdev/core/fbcon.c:2286
Call Trace:
<TASK>
con_font_get drivers/tty/vt/vt.c:4558 [inline]
con_font_op+0x1fc/0xf20 drivers/tty/vt/vt.c:4673
vt_k_ioctl drivers/tty/vt/vt_ioctl.c:474 [inline]
vt_ioctl+0x632/0x2ec0 drivers/tty/vt/vt_ioctl.c:752
tty_ioctl+0x6f8/0x1570 drivers/tty/tty_io.c:2803
vfs_ioctl fs/ioctl.c:51 [inline]
...
So restore the font data in any case, not only for user fonts. Note the
later 'if' is now protected by 'old_userfont' and not 'old_data' as the
latter is always set now. (And it is supposed to be non-NULL. Otherwise
we would see the bug above again.) |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix cpu stuck caused by printings during reset
During reset, cmd to destroy resources such as qp, cq, and mr may fail,
and error logs will be printed. When a large number of resources are
destroyed, there will be lots of printings, and it may lead to a cpu
stuck.
Delete some unnecessary printings and replace other printing functions
in these paths with the ratelimited version. |
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: check outstanding simultaneous SMB operations
If Client send simultaneous SMB operations to ksmbd, It exhausts too much
memory through the "ksmbd_work_cacheā. It will cause OOM issue.
ksmbd has a credit mechanism but it can't handle this problem. This patch
add the check if it exceeds max credits to prevent this problem by assuming
that one smb request consumes at least one credit. |
In the Linux kernel, the following vulnerability has been resolved:
signal: restore the override_rlimit logic
Prior to commit d64696905554 ("Reimplement RLIMIT_SIGPENDING on top of
ucounts") UCOUNT_RLIMIT_SIGPENDING rlimit was not enforced for a class of
signals. However now it's enforced unconditionally, even if
override_rlimit is set. This behavior change caused production issues.
For example, if the limit is reached and a process receives a SIGSEGV
signal, sigqueue_alloc fails to allocate the necessary resources for the
signal delivery, preventing the signal from being delivered with siginfo.
This prevents the process from correctly identifying the fault address and
handling the error. From the user-space perspective, applications are
unaware that the limit has been reached and that the siginfo is
effectively 'corrupted'. This can lead to unpredictable behavior and
crashes, as we observed with java applications.
Fix this by passing override_rlimit into inc_rlimit_get_ucounts() and skip
the comparison to max there if override_rlimit is set. This effectively
restores the old behavior. |
In the Linux kernel, the following vulnerability has been resolved:
Input: uinput - reject requests with unreasonable number of slots
When exercising uinput interface syzkaller may try setting up device
with a really large number of slots, which causes memory allocation
failure in input_mt_init_slots(). While this allocation failure is
handled properly and request is rejected, it results in syzkaller
reports. Additionally, such request may put undue burden on the
system which will try to free a lot of memory for a bogus request.
Fix it by limiting allowed number of slots to 100. This can easily
be extended if we see devices that can track more than 100 contacts. |
In the Linux kernel, the following vulnerability has been resolved:
s390/boot: Avoid possible physmem_info segment corruption
When physical memory for the kernel image is allocated it does not
consider extra memory required for offsetting the image start to
match it with the lower 20 bits of KASLR virtual base address. That
might lead to kernel access beyond its memory range. |