| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Nagios XI versions prior to 5.8.9 are vulnerable to cross-site scripting (XSS) via the Apply Configuration error text. Insufficient validation or escaping of user-supplied input may allow an attacker to inject and execute arbitrary script in the context of a victim's browser. |
| Nagios XI versions prior to 5.8.9 are vulnerable to cross-site scripting (XSS) in the update checking feature. Insufficient validation or escaping of user-supplied input may allow an attacker to inject and execute arbitrary script in the context of a victim's browser. |
| Nagios XI versions prior to 5.11.3 are vulnerable to cross-site scripting (XSS) and cross-site request forgery (CSRF) via the Hypermap Replay component. An attacker can submit crafted input that is not properly validated or escaped, allowing injection of malicious script that executes in the context of a victim's browser (XSS). Additionally, the component does not enforce sufficient anti-CSRF protections on state-changing operations, enabling an attacker to induce authenticated users to perform unwanted actions. |
| Nagios XI versions prior to 5.11.3 are vulnerable to cross-site scripting (XSS) via the Bulk Modifications tool. Insufficient validation or escaping of user-supplied input may allow an attacker to inject and execute arbitrary script in the context of a victim's browser. |
| Nagios XI versions prior to 5.11.3 are vulnerable to cross-site scripting (XSS) via the Bandwidth Report component. Insufficient validation or escaping of user-supplied input may allow an attacker to inject and execute arbitrary script in the context of a victim's browser. |
| Nagios XI versions prior to 5.11.3 are vulnerable to cross-site scripting (XSS) via the Graph Explorer component. Insufficient validation or escaping of user-supplied input may allow an attacker to inject and execute arbitrary script in the context of a victim's browser. |
| Nagios Log Server versions prior to 2.1.14 are vulnerable to cross-site scripting (XSS) via the Snapshots Page. Untrusted log content was not safely encoded for the output context, allowing attacker-controlled data present in logs to execute script in the victim’s browser within the application origin. |
| An issue in NetSurf v3.11 causes the application to read uninitialized heap memory when creating a dom_event structure. |
| An issue in NetSurf v.3.11 allows a remote attacker to execute arbitrary code via the dom_node_normalize function |
| NetSurf 3.11 is vulnerable to Use After Free in dom_node_set_text_content function. |
| Simple User Management System with PHP-MySQL v1.0 is vulnerable to Cross-Site Scripting (XSS) via the Profile Section. The system fails to properly sanitize user input, allowing attackers to inject and execute arbitrary JavaScript when the input is displayed in the browser |
| Phpgurukul Maid Hiring Management System 1.0 is vulnerable to Cross Site Scripting (XSS) in /maid-hiring.php va the name field. |
| In Cleo Harmony before 5.8.0.21, VLTrader before 5.8.0.21, and LexiCom before 5.8.0.21, there is an unrestricted file upload and download that could lead to remote code execution. |
| Authentication bypass by spoofing in Microsoft Configuration Manager allows an authorized attacker to perform spoofing over an adjacent network. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix NULL pointer in can_accept_new_subflow
When testing valkey benchmark tool with MPTCP, the kernel panics in
'mptcp_can_accept_new_subflow' because subflow_req->msk is NULL.
Call trace:
mptcp_can_accept_new_subflow (./net/mptcp/subflow.c:63 (discriminator 4)) (P)
subflow_syn_recv_sock (./net/mptcp/subflow.c:854)
tcp_check_req (./net/ipv4/tcp_minisocks.c:863)
tcp_v4_rcv (./net/ipv4/tcp_ipv4.c:2268)
ip_protocol_deliver_rcu (./net/ipv4/ip_input.c:207)
ip_local_deliver_finish (./net/ipv4/ip_input.c:234)
ip_local_deliver (./net/ipv4/ip_input.c:254)
ip_rcv_finish (./net/ipv4/ip_input.c:449)
...
According to the debug log, the same req received two SYN-ACK in a very
short time, very likely because the client retransmits the syn ack due
to multiple reasons.
Even if the packets are transmitted with a relevant time interval, they
can be processed by the server on different CPUs concurrently). The
'subflow_req->msk' ownership is transferred to the subflow the first,
and there will be a risk of a null pointer dereference here.
This patch fixes this issue by moving the 'subflow_req->msk' under the
`own_req == true` conditional.
Note that the !msk check in subflow_hmac_valid() can be dropped, because
the same check already exists under the own_req mpj branch where the
code has been moved to. |
| In the Linux kernel, the following vulnerability has been resolved:
mfd: ene-kb3930: Fix a potential NULL pointer dereference
The off_gpios could be NULL. Add missing check in the kb3930_probe().
This is similar to the issue fixed in commit b1ba8bcb2d1f
("backlight: hx8357: Fix potential NULL pointer dereference").
This was detected by our static analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
i3c: Add NULL pointer check in i3c_master_queue_ibi()
The I3C master driver may receive an IBI from a target device that has not
been probed yet. In such cases, the master calls `i3c_master_queue_ibi()`
to queue an IBI work task, leading to "Unable to handle kernel read from
unreadable memory" and resulting in a kernel panic.
Typical IBI handling flow:
1. The I3C master scans target devices and probes their respective drivers.
2. The target device driver calls `i3c_device_request_ibi()` to enable IBI
and assigns `dev->ibi = ibi`.
3. The I3C master receives an IBI from the target device and calls
`i3c_master_queue_ibi()` to queue the target device driver’s IBI
handler task.
However, since target device events are asynchronous to the I3C probe
sequence, step 3 may occur before step 2, causing `dev->ibi` to be `NULL`,
leading to a kernel panic.
Add a NULL pointer check in `i3c_master_queue_ibi()` to prevent accessing
an uninitialized `dev->ibi`, ensuring stability. |
| In the Linux kernel, the following vulnerability has been resolved:
soc: samsung: exynos-chipid: Add NULL pointer check in exynos_chipid_probe()
soc_dev_attr->revision could be NULL, thus,
a pointer check is added to prevent potential NULL pointer dereference.
This is similar to the fix in commit 3027e7b15b02
("ice: Fix some null pointer dereference issues in ice_ptp.c").
This issue is found by our static analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix off-by-one error in do_split
Syzkaller detected a use-after-free issue in ext4_insert_dentry that was
caused by out-of-bounds access due to incorrect splitting in do_split.
BUG: KASAN: use-after-free in ext4_insert_dentry+0x36a/0x6d0 fs/ext4/namei.c:2109
Write of size 251 at addr ffff888074572f14 by task syz-executor335/5847
CPU: 0 UID: 0 PID: 5847 Comm: syz-executor335 Not tainted 6.12.0-rc6-syzkaller-00318-ga9cda7c0ffed #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/30/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
__asan_memcpy+0x40/0x70 mm/kasan/shadow.c:106
ext4_insert_dentry+0x36a/0x6d0 fs/ext4/namei.c:2109
add_dirent_to_buf+0x3d9/0x750 fs/ext4/namei.c:2154
make_indexed_dir+0xf98/0x1600 fs/ext4/namei.c:2351
ext4_add_entry+0x222a/0x25d0 fs/ext4/namei.c:2455
ext4_add_nondir+0x8d/0x290 fs/ext4/namei.c:2796
ext4_symlink+0x920/0xb50 fs/ext4/namei.c:3431
vfs_symlink+0x137/0x2e0 fs/namei.c:4615
do_symlinkat+0x222/0x3a0 fs/namei.c:4641
__do_sys_symlink fs/namei.c:4662 [inline]
__se_sys_symlink fs/namei.c:4660 [inline]
__x64_sys_symlink+0x7a/0x90 fs/namei.c:4660
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
The following loop is located right above 'if' statement.
for (i = count-1; i >= 0; i--) {
/* is more than half of this entry in 2nd half of the block? */
if (size + map[i].size/2 > blocksize/2)
break;
size += map[i].size;
move++;
}
'i' in this case could go down to -1, in which case sum of active entries
wouldn't exceed half the block size, but previous behaviour would also do
split in half if sum would exceed at the very last block, which in case of
having too many long name files in a single block could lead to
out-of-bounds access and following use-after-free.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: host: Fix race between unprepare and queue_buf
A client driver may use mhi_unprepare_from_transfer() to quiesce
incoming data during the client driver's tear down. The client driver
might also be processing data at the same time, resulting in a call to
mhi_queue_buf() which will invoke mhi_gen_tre(). If mhi_gen_tre() runs
after mhi_unprepare_from_transfer() has torn down the channel, a panic
will occur due to an invalid dereference leading to a page fault.
This occurs because mhi_gen_tre() does not verify the channel state
after locking it. Fix this by having mhi_gen_tre() confirm the channel
state is valid, or return error to avoid accessing deinitialized data.
[mani: added stable tag] |