CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
thermal/drivers/mediatek/lvts_thermal: Fix a memory leak in an error handling path
If devm_krealloc() fails, then 'efuse' is leaking.
So free it to avoid a leak. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fix memleak in map from abort path
The delete set command does not rely on the transaction object for
element removal, therefore, a combination of delete element + delete set
from the abort path could result in restoring twice the refcount of the
mapping.
Check for inactive element in the next generation for the delete element
command in the abort path, skip restoring state if next generation bit
has been already cleared. This is similar to the activate logic using
the set walk iterator.
[ 6170.286929] ------------[ cut here ]------------
[ 6170.286939] WARNING: CPU: 6 PID: 790302 at net/netfilter/nf_tables_api.c:2086 nf_tables_chain_destroy+0x1f7/0x220 [nf_tables]
[ 6170.287071] Modules linked in: [...]
[ 6170.287633] CPU: 6 PID: 790302 Comm: kworker/6:2 Not tainted 6.9.0-rc3+ #365
[ 6170.287768] RIP: 0010:nf_tables_chain_destroy+0x1f7/0x220 [nf_tables]
[ 6170.287886] Code: df 48 8d 7d 58 e8 69 2e 3b df 48 8b 7d 58 e8 80 1b 37 df 48 8d 7d 68 e8 57 2e 3b df 48 8b 7d 68 e8 6e 1b 37 df 48 89 ef eb c4 <0f> 0b 48 83 c4 08 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc 0f
[ 6170.287895] RSP: 0018:ffff888134b8fd08 EFLAGS: 00010202
[ 6170.287904] RAX: 0000000000000001 RBX: ffff888125bffb28 RCX: dffffc0000000000
[ 6170.287912] RDX: 0000000000000003 RSI: ffffffffa20298ab RDI: ffff88811ebe4750
[ 6170.287919] RBP: ffff88811ebe4700 R08: ffff88838e812650 R09: fffffbfff0623a55
[ 6170.287926] R10: ffffffff8311d2af R11: 0000000000000001 R12: ffff888125bffb10
[ 6170.287933] R13: ffff888125bffb10 R14: dead000000000122 R15: dead000000000100
[ 6170.287940] FS: 0000000000000000(0000) GS:ffff888390b00000(0000) knlGS:0000000000000000
[ 6170.287948] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 6170.287955] CR2: 00007fd31fc00710 CR3: 0000000133f60004 CR4: 00000000001706f0
[ 6170.287962] Call Trace:
[ 6170.287967] <TASK>
[ 6170.287973] ? __warn+0x9f/0x1a0
[ 6170.287986] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables]
[ 6170.288092] ? report_bug+0x1b1/0x1e0
[ 6170.287986] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables]
[ 6170.288092] ? report_bug+0x1b1/0x1e0
[ 6170.288104] ? handle_bug+0x3c/0x70
[ 6170.288112] ? exc_invalid_op+0x17/0x40
[ 6170.288120] ? asm_exc_invalid_op+0x1a/0x20
[ 6170.288132] ? nf_tables_chain_destroy+0x2b/0x220 [nf_tables]
[ 6170.288243] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables]
[ 6170.288366] ? nf_tables_chain_destroy+0x2b/0x220 [nf_tables]
[ 6170.288483] nf_tables_trans_destroy_work+0x588/0x590 [nf_tables] |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix memory leak in create_process failure
Fix memory leak due to a leaked mmget reference on an error handling
code path that is triggered when attempting to create KFD processes
while a GPU reset is in progress. |
In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau: fix several DMA buffer leaks
Nouveau manages GSP-RM DMA buffers with nvkm_gsp_mem objects. Several of
these buffers are never dealloced. Some of them can be deallocated
right after GSP-RM is initialized, but the rest need to stay until the
driver unloads.
Also futher bullet-proof these objects by poisoning the buffer and
clearing the nvkm_gsp_mem object when it is deallocated. Poisoning
the buffer should trigger an error (or crash) from GSP-RM if it tries
to access the buffer after we've deallocated it, because we were wrong
about when it is safe to deallocate.
Finally, change the mem->size field to a size_t because that's the same
type that dma_alloc_coherent expects. |
In the Linux kernel, the following vulnerability has been resolved:
md: fix kmemleak of rdev->serial
If kobject_add() is fail in bind_rdev_to_array(), 'rdev->serial' will be
alloc not be freed, and kmemleak occurs.
unreferenced object 0xffff88815a350000 (size 49152):
comm "mdadm", pid 789, jiffies 4294716910
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc f773277a):
[<0000000058b0a453>] kmemleak_alloc+0x61/0xe0
[<00000000366adf14>] __kmalloc_large_node+0x15e/0x270
[<000000002e82961b>] __kmalloc_node.cold+0x11/0x7f
[<00000000f206d60a>] kvmalloc_node+0x74/0x150
[<0000000034bf3363>] rdev_init_serial+0x67/0x170
[<0000000010e08fe9>] mddev_create_serial_pool+0x62/0x220
[<00000000c3837bf0>] bind_rdev_to_array+0x2af/0x630
[<0000000073c28560>] md_add_new_disk+0x400/0x9f0
[<00000000770e30ff>] md_ioctl+0x15bf/0x1c10
[<000000006cfab718>] blkdev_ioctl+0x191/0x3f0
[<0000000085086a11>] vfs_ioctl+0x22/0x60
[<0000000018b656fe>] __x64_sys_ioctl+0xba/0xe0
[<00000000e54e675e>] do_syscall_64+0x71/0x150
[<000000008b0ad622>] entry_SYSCALL_64_after_hwframe+0x6c/0x74 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: wfx: fix memory leak when starting AP
Kmemleak reported this error:
unreferenced object 0xd73d1180 (size 184):
comm "wpa_supplicant", pid 1559, jiffies 13006305 (age 964.245s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 1e 00 01 00 00 00 00 00 ................
backtrace:
[<5ca11420>] kmem_cache_alloc+0x20c/0x5ac
[<127bdd74>] __alloc_skb+0x144/0x170
[<fb8a5e38>] __netdev_alloc_skb+0x50/0x180
[<0f9fa1d5>] __ieee80211_beacon_get+0x290/0x4d4 [mac80211]
[<7accd02d>] ieee80211_beacon_get_tim+0x54/0x18c [mac80211]
[<41e25cc3>] wfx_start_ap+0xc8/0x234 [wfx]
[<93a70356>] ieee80211_start_ap+0x404/0x6b4 [mac80211]
[<a4a661cd>] nl80211_start_ap+0x76c/0x9e0 [cfg80211]
[<47bd8b68>] genl_rcv_msg+0x198/0x378
[<453ef796>] netlink_rcv_skb+0xd0/0x130
[<6b7c977a>] genl_rcv+0x34/0x44
[<66b2d04d>] netlink_unicast+0x1b4/0x258
[<f965b9b6>] netlink_sendmsg+0x1e8/0x428
[<aadb8231>] ____sys_sendmsg+0x1e0/0x274
[<d2b5212d>] ___sys_sendmsg+0x80/0xb4
[<69954f45>] __sys_sendmsg+0x64/0xa8
unreferenced object 0xce087000 (size 1024):
comm "wpa_supplicant", pid 1559, jiffies 13006305 (age 964.246s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
10 00 07 40 00 00 00 00 00 00 00 00 00 00 00 00 ...@............
backtrace:
[<9a993714>] __kmalloc_track_caller+0x230/0x600
[<f83ea192>] kmalloc_reserve.constprop.0+0x30/0x74
[<a2c61343>] __alloc_skb+0xa0/0x170
[<fb8a5e38>] __netdev_alloc_skb+0x50/0x180
[<0f9fa1d5>] __ieee80211_beacon_get+0x290/0x4d4 [mac80211]
[<7accd02d>] ieee80211_beacon_get_tim+0x54/0x18c [mac80211]
[<41e25cc3>] wfx_start_ap+0xc8/0x234 [wfx]
[<93a70356>] ieee80211_start_ap+0x404/0x6b4 [mac80211]
[<a4a661cd>] nl80211_start_ap+0x76c/0x9e0 [cfg80211]
[<47bd8b68>] genl_rcv_msg+0x198/0x378
[<453ef796>] netlink_rcv_skb+0xd0/0x130
[<6b7c977a>] genl_rcv+0x34/0x44
[<66b2d04d>] netlink_unicast+0x1b4/0x258
[<f965b9b6>] netlink_sendmsg+0x1e8/0x428
[<aadb8231>] ____sys_sendmsg+0x1e0/0x274
[<d2b5212d>] ___sys_sendmsg+0x80/0xb4
However, since the kernel is build optimized, it seems the stack is not
accurate. It appears the issue is related to wfx_set_mfp_ap(). The issue
is obvious in this function: memory allocated by ieee80211_beacon_get()
is never released. Fixing this leak makes kmemleak happy. |
In the Linux kernel, the following vulnerability has been resolved:
ACPI: processor_idle: Fix memory leak in acpi_processor_power_exit()
After unregistering the CPU idle device, the memory associated with
it is not freed, leading to a memory leak:
unreferenced object 0xffff896282f6c000 (size 1024):
comm "swapper/0", pid 1, jiffies 4294893170
hex dump (first 32 bytes):
00 00 00 00 0b 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 8836a742):
[<ffffffff993495ed>] kmalloc_trace+0x29d/0x340
[<ffffffff9972f3b3>] acpi_processor_power_init+0xf3/0x1c0
[<ffffffff9972d263>] __acpi_processor_start+0xd3/0xf0
[<ffffffff9972d2bc>] acpi_processor_start+0x2c/0x50
[<ffffffff99805872>] really_probe+0xe2/0x480
[<ffffffff99805c98>] __driver_probe_device+0x78/0x160
[<ffffffff99805daf>] driver_probe_device+0x1f/0x90
[<ffffffff9980601e>] __driver_attach+0xce/0x1c0
[<ffffffff99803170>] bus_for_each_dev+0x70/0xc0
[<ffffffff99804822>] bus_add_driver+0x112/0x210
[<ffffffff99807245>] driver_register+0x55/0x100
[<ffffffff9aee4acb>] acpi_processor_driver_init+0x3b/0xc0
[<ffffffff990012d1>] do_one_initcall+0x41/0x300
[<ffffffff9ae7c4b0>] kernel_init_freeable+0x320/0x470
[<ffffffff99b231f6>] kernel_init+0x16/0x1b0
[<ffffffff99042e6d>] ret_from_fork+0x2d/0x50
Fix this by freeing the CPU idle device after unregistering it. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btusb: Fix memory leak
This checks if CONFIG_DEV_COREDUMP is enabled before attempting to clone
the skb and also make sure btmtk_process_coredump frees the skb passed
following the same logic. |
In the Linux kernel, the following vulnerability has been resolved:
dm-integrity: fix a memory leak when rechecking the data
Memory for the "checksums" pointer will leak if the data is rechecked
after checksum failure (because the associated kfree won't happen due
to 'goto skip_io').
Fix this by freeing the checksums memory before recheck, and just use
the "checksum_onstack" memory for storing checksum during recheck. |
In the Linux kernel, the following vulnerability has been resolved:
cachefiles: fix memory leak in cachefiles_add_cache()
The following memory leak was reported after unbinding /dev/cachefiles:
==================================================================
unreferenced object 0xffff9b674176e3c0 (size 192):
comm "cachefilesd2", pid 680, jiffies 4294881224
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc ea38a44b):
[<ffffffff8eb8a1a5>] kmem_cache_alloc+0x2d5/0x370
[<ffffffff8e917f86>] prepare_creds+0x26/0x2e0
[<ffffffffc002eeef>] cachefiles_determine_cache_security+0x1f/0x120
[<ffffffffc00243ec>] cachefiles_add_cache+0x13c/0x3a0
[<ffffffffc0025216>] cachefiles_daemon_write+0x146/0x1c0
[<ffffffff8ebc4a3b>] vfs_write+0xcb/0x520
[<ffffffff8ebc5069>] ksys_write+0x69/0xf0
[<ffffffff8f6d4662>] do_syscall_64+0x72/0x140
[<ffffffff8f8000aa>] entry_SYSCALL_64_after_hwframe+0x6e/0x76
==================================================================
Put the reference count of cache_cred in cachefiles_daemon_unbind() to
fix the problem. And also put cache_cred in cachefiles_add_cache() error
branch to avoid memory leaks. |
In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Fix a memleak in init_credit_return
When dma_alloc_coherent fails to allocate dd->cr_base[i].va,
init_credit_return should deallocate dd->cr_base and
dd->cr_base[i] that allocated before. Or those resources
would be never freed and a memleak is triggered. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix memory leak in dm_sw_fini()
After destroying dmub_srv, the memory associated with it is
not freed, causing a memory leak:
unreferenced object 0xffff896302b45800 (size 1024):
comm "(udev-worker)", pid 222, jiffies 4294894636
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 6265fd77):
[<ffffffff993495ed>] kmalloc_trace+0x29d/0x340
[<ffffffffc0ea4a94>] dm_dmub_sw_init+0xb4/0x450 [amdgpu]
[<ffffffffc0ea4e55>] dm_sw_init+0x15/0x2b0 [amdgpu]
[<ffffffffc0ba8557>] amdgpu_device_init+0x1417/0x24e0 [amdgpu]
[<ffffffffc0bab285>] amdgpu_driver_load_kms+0x15/0x190 [amdgpu]
[<ffffffffc0ba09c7>] amdgpu_pci_probe+0x187/0x4e0 [amdgpu]
[<ffffffff9968fd1e>] local_pci_probe+0x3e/0x90
[<ffffffff996918a3>] pci_device_probe+0xc3/0x230
[<ffffffff99805872>] really_probe+0xe2/0x480
[<ffffffff99805c98>] __driver_probe_device+0x78/0x160
[<ffffffff99805daf>] driver_probe_device+0x1f/0x90
[<ffffffff9980601e>] __driver_attach+0xce/0x1c0
[<ffffffff99803170>] bus_for_each_dev+0x70/0xc0
[<ffffffff99804822>] bus_add_driver+0x112/0x210
[<ffffffff99807245>] driver_register+0x55/0x100
[<ffffffff990012d1>] do_one_initcall+0x41/0x300
Fix this by freeing dmub_srv after destroying it. |
In the Linux kernel, the following vulnerability has been resolved:
devlink: fix possible use-after-free and memory leaks in devlink_init()
The pernet operations structure for the subsystem must be registered
before registering the generic netlink family.
Make an unregister in case of unsuccessful registration. |
In the Linux kernel, the following vulnerability has been resolved:
Fix memory leak in posix_clock_open()
If the clk ops.open() function returns an error, we don't release the
pccontext we allocated for this clock.
Re-organize the code slightly to make it all more obvious. |
In the Linux kernel, the following vulnerability has been resolved:
EDAC/highbank: Fix memory leak in highbank_mc_probe()
When devres_open_group() fails, it returns -ENOMEM without freeing memory
allocated by edac_mc_alloc().
Call edac_mc_free() on the error handling path to avoid a memory leak.
[ bp: Massage commit message. ] |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: imx-sdma: Fix a possible memory leak in sdma_transfer_init
If the function sdma_load_context() fails, the sdma_desc will be
freed, but the allocated desc->bd is forgot to be freed.
We already met the sdma_load_context() failure case and the log as
below:
[ 450.699064] imx-sdma 30bd0000.dma-controller: Timeout waiting for CH0 ready
...
In this case, the desc->bd will not be freed without this change. |
In the Linux kernel, the following vulnerability has been resolved:
fbdev: smscufx: fix error handling code in ufx_usb_probe
The current error handling code in ufx_usb_probe have many unmatching
issues, e.g., missing ufx_free_usb_list, destroy_modedb label should
only include framebuffer_release, fb_dealloc_cmap only matches
fb_alloc_cmap.
My local syzkaller reports a memory leak bug:
memory leak in ufx_usb_probe
BUG: memory leak
unreferenced object 0xffff88802f879580 (size 128):
comm "kworker/0:7", pid 17416, jiffies 4295067474 (age 46.710s)
hex dump (first 32 bytes):
80 21 7c 2e 80 88 ff ff 18 d0 d0 0c 80 88 ff ff .!|.............
00 d0 d0 0c 80 88 ff ff e0 ff ff ff 0f 00 00 00 ................
backtrace:
[<ffffffff814c99a0>] kmalloc_trace+0x20/0x90 mm/slab_common.c:1045
[<ffffffff824d219c>] kmalloc include/linux/slab.h:553 [inline]
[<ffffffff824d219c>] kzalloc include/linux/slab.h:689 [inline]
[<ffffffff824d219c>] ufx_alloc_urb_list drivers/video/fbdev/smscufx.c:1873 [inline]
[<ffffffff824d219c>] ufx_usb_probe+0x11c/0x15a0 drivers/video/fbdev/smscufx.c:1655
[<ffffffff82d17927>] usb_probe_interface+0x177/0x370 drivers/usb/core/driver.c:396
[<ffffffff82712f0d>] call_driver_probe drivers/base/dd.c:560 [inline]
[<ffffffff82712f0d>] really_probe+0x12d/0x390 drivers/base/dd.c:639
[<ffffffff8271322f>] __driver_probe_device+0xbf/0x140 drivers/base/dd.c:778
[<ffffffff827132da>] driver_probe_device+0x2a/0x120 drivers/base/dd.c:808
[<ffffffff82713c27>] __device_attach_driver+0xf7/0x150 drivers/base/dd.c:936
[<ffffffff82710137>] bus_for_each_drv+0xb7/0x100 drivers/base/bus.c:427
[<ffffffff827136b5>] __device_attach+0x105/0x2d0 drivers/base/dd.c:1008
[<ffffffff82711d36>] bus_probe_device+0xc6/0xe0 drivers/base/bus.c:487
[<ffffffff8270e242>] device_add+0x642/0xdc0 drivers/base/core.c:3517
[<ffffffff82d14d5f>] usb_set_configuration+0x8ef/0xb80 drivers/usb/core/message.c:2170
[<ffffffff82d2576c>] usb_generic_driver_probe+0x8c/0xc0 drivers/usb/core/generic.c:238
[<ffffffff82d16ffc>] usb_probe_device+0x5c/0x140 drivers/usb/core/driver.c:293
[<ffffffff82712f0d>] call_driver_probe drivers/base/dd.c:560 [inline]
[<ffffffff82712f0d>] really_probe+0x12d/0x390 drivers/base/dd.c:639
[<ffffffff8271322f>] __driver_probe_device+0xbf/0x140 drivers/base/dd.c:778
Fix this bug by rewriting the error handling code in ufx_usb_probe. |
In the Linux kernel, the following vulnerability has been resolved:
nfc: nfcmrvl: Fix memory leak in nfcmrvl_play_deferred
Similar to the handling of play_deferred in commit 19cfe912c37b
("Bluetooth: btusb: Fix memory leak in play_deferred"), we thought
a patch might be needed here as well.
Currently usb_submit_urb is called directly to submit deferred tx
urbs after unanchor them.
So the usb_giveback_urb_bh would failed to unref it in usb_unanchor_urb
and cause memory leak.
Put those urbs in tx_anchor to avoid the leak, and also fix the error
handling. |
In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3: Fix error handling in gic_populate_ppi_partitions
of_get_child_by_name() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
When kcalloc fails, it missing of_node_put() and results in refcount
leak. Fix this by goto out_put_node label. |
In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v3: Fix refcount leak in gic_populate_ppi_partitions
of_find_node_by_phandle() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak. |