CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
iio: adis16475: fix deadlock on frequency set
With commit 39c024b51b560
("iio: adis16475: improve sync scale mode handling"), two deadlocks were
introduced:
1) The call to 'adis_write_reg_16()' was not changed to it's unlocked
version.
2) The lock was not being released on the success path of the function.
This change fixes both these issues. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: conntrack: serialize hash resizes and cleanups
Syzbot was able to trigger the following warning [1]
No repro found by syzbot yet but I was able to trigger similar issue
by having 2 scripts running in parallel, changing conntrack hash sizes,
and:
for j in `seq 1 1000` ; do unshare -n /bin/true >/dev/null ; done
It would take more than 5 minutes for net_namespace structures
to be cleaned up.
This is because nf_ct_iterate_cleanup() has to restart everytime
a resize happened.
By adding a mutex, we can serialize hash resizes and cleanups
and also make get_next_corpse() faster by skipping over empty
buckets.
Even without resizes in the picture, this patch considerably
speeds up network namespace dismantles.
[1]
INFO: task syz-executor.0:8312 can't die for more than 144 seconds.
task:syz-executor.0 state:R running task stack:25672 pid: 8312 ppid: 6573 flags:0x00004006
Call Trace:
context_switch kernel/sched/core.c:4955 [inline]
__schedule+0x940/0x26f0 kernel/sched/core.c:6236
preempt_schedule_common+0x45/0xc0 kernel/sched/core.c:6408
preempt_schedule_thunk+0x16/0x18 arch/x86/entry/thunk_64.S:35
__local_bh_enable_ip+0x109/0x120 kernel/softirq.c:390
local_bh_enable include/linux/bottom_half.h:32 [inline]
get_next_corpse net/netfilter/nf_conntrack_core.c:2252 [inline]
nf_ct_iterate_cleanup+0x15a/0x450 net/netfilter/nf_conntrack_core.c:2275
nf_conntrack_cleanup_net_list+0x14c/0x4f0 net/netfilter/nf_conntrack_core.c:2469
ops_exit_list+0x10d/0x160 net/core/net_namespace.c:171
setup_net+0x639/0xa30 net/core/net_namespace.c:349
copy_net_ns+0x319/0x760 net/core/net_namespace.c:470
create_new_namespaces+0x3f6/0xb20 kernel/nsproxy.c:110
unshare_nsproxy_namespaces+0xc1/0x1f0 kernel/nsproxy.c:226
ksys_unshare+0x445/0x920 kernel/fork.c:3128
__do_sys_unshare kernel/fork.c:3202 [inline]
__se_sys_unshare kernel/fork.c:3200 [inline]
__x64_sys_unshare+0x2d/0x40 kernel/fork.c:3200
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f63da68e739
RSP: 002b:00007f63d7c05188 EFLAGS: 00000246 ORIG_RAX: 0000000000000110
RAX: ffffffffffffffda RBX: 00007f63da792f80 RCX: 00007f63da68e739
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000040000000
RBP: 00007f63da6e8cc4 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f63da792f80
R13: 00007fff50b75d3f R14: 00007f63d7c05300 R15: 0000000000022000
Showing all locks held in the system:
1 lock held by khungtaskd/27:
#0: ffffffff8b980020 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x53/0x260 kernel/locking/lockdep.c:6446
2 locks held by kworker/u4:2/153:
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: arch_atomic64_set arch/x86/include/asm/atomic64_64.h:34 [inline]
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: arch_atomic_long_set include/linux/atomic/atomic-long.h:41 [inline]
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: atomic_long_set include/linux/atomic/atomic-instrumented.h:1198 [inline]
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: set_work_data kernel/workqueue.c:634 [inline]
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: set_work_pool_and_clear_pending kernel/workqueue.c:661 [inline]
#0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work+0x896/0x1690 kernel/workqueue.c:2268
#1: ffffc9000140fdb0 ((kfence_timer).work){+.+.}-{0:0}, at: process_one_work+0x8ca/0x1690 kernel/workqueue.c:2272
1 lock held by systemd-udevd/2970:
1 lock held by in:imklog/6258:
#0: ffff88807f970ff0 (&f->f_pos_lock){+.+.}-{3:3}, at: __fdget_pos+0xe9/0x100 fs/file.c:990
3 locks held by kworker/1:6/8158:
1 lock held by syz-executor.0/8312:
2 locks held by kworker/u4:13/9320:
1 lock held by
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix soft lockup during fsstress
Below traces are observed during fsstress and system got hung.
[ 130.698396] watchdog: BUG: soft lockup - CPU#6 stuck for 26s! |
In the Linux kernel, the following vulnerability has been resolved:
powerpc/mm: Fix lockup on kernel exec fault
The powerpc kernel is not prepared to handle exec faults from kernel.
Especially, the function is_exec_fault() will return 'false' when an
exec fault is taken by kernel, because the check is based on reading
current->thread.regs->trap which contains the trap from user.
For instance, when provoking a LKDTM EXEC_USERSPACE test,
current->thread.regs->trap is set to SYSCALL trap (0xc00), and
the fault taken by the kernel is not seen as an exec fault by
set_access_flags_filter().
Commit d7df2443cd5f ("powerpc/mm: Fix spurious segfaults on radix
with autonuma") made it clear and handled it properly. But later on
commit d3ca587404b3 ("powerpc/mm: Fix reporting of kernel execute
faults") removed that handling, introducing test based on error_code.
And here is the problem, because on the 603 all upper bits of SRR1
get cleared when the TLB instruction miss handler bails out to ISI.
Until commit cbd7e6ca0210 ("powerpc/fault: Avoid heavy
search_exception_tables() verification"), an exec fault from kernel
at a userspace address was indirectly caught by the lack of entry for
that address in the exception tables. But after that commit the
kernel mainly relies on KUAP or on core mm handling to catch wrong
user accesses. Here the access is not wrong, so mm handles it.
It is a minor fault because PAGE_EXEC is not set,
set_access_flags_filter() should set PAGE_EXEC and voila.
But as is_exec_fault() returns false as explained in the beginning,
set_access_flags_filter() bails out without setting PAGE_EXEC flag,
which leads to a forever minor exec fault.
As the kernel is not prepared to handle such exec faults, the thing to
do is to fire in bad_kernel_fault() for any exec fault taken by the
kernel, as it was prior to commit d3ca587404b3. |
In the Linux kernel, the following vulnerability has been resolved:
mwifiex: bring down link before deleting interface
We can deadlock when rmmod'ing the driver or going through firmware
reset, because the cfg80211_unregister_wdev() has to bring down the link
for us, ... which then grab the same wiphy lock.
nl80211_del_interface() already handles a very similar case, with a nice
description:
/*
* We hold RTNL, so this is safe, without RTNL opencount cannot
* reach 0, and thus the rdev cannot be deleted.
*
* We need to do it for the dev_close(), since that will call
* the netdev notifiers, and we need to acquire the mutex there
* but don't know if we get there from here or from some other
* place (e.g. "ip link set ... down").
*/
mutex_unlock(&rdev->wiphy.mtx);
...
Do similarly for mwifiex teardown, by ensuring we bring the link down
first.
Sample deadlock trace:
[ 247.103516] INFO: task rmmod:2119 blocked for more than 123 seconds.
[ 247.110630] Not tainted 5.12.4 #5
[ 247.115796] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 247.124557] task:rmmod state:D stack: 0 pid: 2119 ppid: 2114 flags:0x00400208
[ 247.133905] Call trace:
[ 247.136644] __switch_to+0x130/0x170
[ 247.140643] __schedule+0x714/0xa0c
[ 247.144548] schedule_preempt_disabled+0x88/0xf4
[ 247.149714] __mutex_lock_common+0x43c/0x750
[ 247.154496] mutex_lock_nested+0x5c/0x68
[ 247.158884] cfg80211_netdev_notifier_call+0x280/0x4e0 [cfg80211]
[ 247.165769] raw_notifier_call_chain+0x4c/0x78
[ 247.170742] call_netdevice_notifiers_info+0x68/0xa4
[ 247.176305] __dev_close_many+0x7c/0x138
[ 247.180693] dev_close_many+0x7c/0x10c
[ 247.184893] unregister_netdevice_many+0xfc/0x654
[ 247.190158] unregister_netdevice_queue+0xb4/0xe0
[ 247.195424] _cfg80211_unregister_wdev+0xa4/0x204 [cfg80211]
[ 247.201816] cfg80211_unregister_wdev+0x20/0x2c [cfg80211]
[ 247.208016] mwifiex_del_virtual_intf+0xc8/0x188 [mwifiex]
[ 247.214174] mwifiex_uninit_sw+0x158/0x1b0 [mwifiex]
[ 247.219747] mwifiex_remove_card+0x38/0xa0 [mwifiex]
[ 247.225316] mwifiex_pcie_remove+0xd0/0xe0 [mwifiex_pcie]
[ 247.231451] pci_device_remove+0x50/0xe0
[ 247.235849] device_release_driver_internal+0x110/0x1b0
[ 247.241701] driver_detach+0x5c/0x9c
[ 247.245704] bus_remove_driver+0x84/0xb8
[ 247.250095] driver_unregister+0x3c/0x60
[ 247.254486] pci_unregister_driver+0x2c/0x90
[ 247.259267] cleanup_module+0x18/0xcdc [mwifiex_pcie] |
In the Linux kernel, the following vulnerability has been resolved:
usb: cdnsp: Fix deadlock issue in cdnsp_thread_irq_handler
Patch fixes the following critical issue caused by deadlock which has been
detected during testing NCM class:
smp: csd: Detected non-responsive CSD lock (#1) on CPU#0
smp: csd: CSD lock (#1) unresponsive.
....
RIP: 0010:native_queued_spin_lock_slowpath+0x61/0x1d0
RSP: 0018:ffffbc494011cde0 EFLAGS: 00000002
RAX: 0000000000000101 RBX: ffff9ee8116b4a68 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff9ee8116b4658
RBP: ffffbc494011cde0 R08: 0000000000000001 R09: 0000000000000000
R10: ffff9ee8116b4670 R11: 0000000000000000 R12: ffff9ee8116b4658
R13: ffff9ee8116b4670 R14: 0000000000000246 R15: ffff9ee8116b4658
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7bcc41a830 CR3: 000000007a612003 CR4: 00000000001706e0
Call Trace:
<IRQ>
do_raw_spin_lock+0xc0/0xd0
_raw_spin_lock_irqsave+0x95/0xa0
cdnsp_gadget_ep_queue.cold+0x88/0x107 [cdnsp_udc_pci]
usb_ep_queue+0x35/0x110
eth_start_xmit+0x220/0x3d0 [u_ether]
ncm_tx_timeout+0x34/0x40 [usb_f_ncm]
? ncm_free_inst+0x50/0x50 [usb_f_ncm]
__hrtimer_run_queues+0xac/0x440
hrtimer_run_softirq+0x8c/0xb0
__do_softirq+0xcf/0x428
asm_call_irq_on_stack+0x12/0x20
</IRQ>
do_softirq_own_stack+0x61/0x70
irq_exit_rcu+0xc1/0xd0
sysvec_apic_timer_interrupt+0x52/0xb0
asm_sysvec_apic_timer_interrupt+0x12/0x20
RIP: 0010:do_raw_spin_trylock+0x18/0x40
RSP: 0018:ffffbc494138bda8 EFLAGS: 00000246
RAX: 0000000000000000 RBX: ffff9ee8116b4658 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff9ee8116b4658
RBP: ffffbc494138bda8 R08: 0000000000000001 R09: 0000000000000000
R10: ffff9ee8116b4670 R11: 0000000000000000 R12: ffff9ee8116b4658
R13: ffff9ee8116b4670 R14: ffff9ee7b5c73d80 R15: ffff9ee8116b4000
_raw_spin_lock+0x3d/0x70
? cdnsp_thread_irq_handler.cold+0x32/0x112c [cdnsp_udc_pci]
cdnsp_thread_irq_handler.cold+0x32/0x112c [cdnsp_udc_pci]
? cdnsp_remove_request+0x1f0/0x1f0 [cdnsp_udc_pci]
? cdnsp_thread_irq_handler+0x5/0xa0 [cdnsp_udc_pci]
? irq_thread+0xa0/0x1c0
irq_thread_fn+0x28/0x60
irq_thread+0x105/0x1c0
? __kthread_parkme+0x42/0x90
? irq_forced_thread_fn+0x90/0x90
? wake_threads_waitq+0x30/0x30
? irq_thread_check_affinity+0xe0/0xe0
kthread+0x12a/0x160
? kthread_park+0x90/0x90
ret_from_fork+0x22/0x30
The root cause of issue is spin_lock/spin_unlock instruction instead
spin_lock_irqsave/spin_lock_irqrestore in cdnsp_thread_irq_handler
function. |
In the Linux kernel, the following vulnerability has been resolved:
mac80211: fix deadlock in AP/VLAN handling
Syzbot reports that when you have AP_VLAN interfaces that are up
and close the AP interface they belong to, we get a deadlock. No
surprise - since we dev_close() them with the wiphy mutex held,
which goes back into the netdev notifier in cfg80211 and tries to
acquire the wiphy mutex there.
To fix this, we need to do two things:
1) prevent changing iftype while AP_VLANs are up, we can't
easily fix this case since cfg80211 already calls us with
the wiphy mutex held, but change_interface() is relatively
rare in drivers anyway, so changing iftype isn't used much
(and userspace has to fall back to down/change/up anyway)
2) pull the dev_close() loop over VLANs out of the wiphy mutex
section in the normal stop case |
In the Linux kernel, the following vulnerability has been resolved:
tty: tty_buffer: Fix the softlockup issue in flush_to_ldisc
When running ltp testcase(ltp/testcases/kernel/pty/pty04.c) with arm64, there is a soft lockup,
which look like this one:
Workqueue: events_unbound flush_to_ldisc
Call trace:
dump_backtrace+0x0/0x1ec
show_stack+0x24/0x30
dump_stack+0xd0/0x128
panic+0x15c/0x374
watchdog_timer_fn+0x2b8/0x304
__run_hrtimer+0x88/0x2c0
__hrtimer_run_queues+0xa4/0x120
hrtimer_interrupt+0xfc/0x270
arch_timer_handler_phys+0x40/0x50
handle_percpu_devid_irq+0x94/0x220
__handle_domain_irq+0x88/0xf0
gic_handle_irq+0x84/0xfc
el1_irq+0xc8/0x180
slip_unesc+0x80/0x214 [slip]
tty_ldisc_receive_buf+0x64/0x80
tty_port_default_receive_buf+0x50/0x90
flush_to_ldisc+0xbc/0x110
process_one_work+0x1d4/0x4b0
worker_thread+0x180/0x430
kthread+0x11c/0x120
In the testcase pty04, The first process call the write syscall to send
data to the pty master. At the same time, the workqueue will do the
flush_to_ldisc to pop data in a loop until there is no more data left.
When the sender and workqueue running in different core, the sender sends
data fastly in full time which will result in workqueue doing work in loop
for a long time and occuring softlockup in flush_to_ldisc with kernel
configured without preempt. So I add need_resched check and cond_resched
in the flush_to_ldisc loop to avoid it. |
In the Linux kernel, the following vulnerability has been resolved:
tipc: wait and exit until all work queues are done
On some host, a crash could be triggered simply by repeating these
commands several times:
# modprobe tipc
# tipc bearer enable media udp name UDP1 localip 127.0.0.1
# rmmod tipc
[] BUG: unable to handle kernel paging request at ffffffffc096bb00
[] Workqueue: events 0xffffffffc096bb00
[] Call Trace:
[] ? process_one_work+0x1a7/0x360
[] ? worker_thread+0x30/0x390
[] ? create_worker+0x1a0/0x1a0
[] ? kthread+0x116/0x130
[] ? kthread_flush_work_fn+0x10/0x10
[] ? ret_from_fork+0x35/0x40
When removing the TIPC module, the UDP tunnel sock will be delayed to
release in a work queue as sock_release() can't be done in rtnl_lock().
If the work queue is schedule to run after the TIPC module is removed,
kernel will crash as the work queue function cleanup_beareri() code no
longer exists when trying to invoke it.
To fix it, this patch introduce a member wq_count in tipc_net to track
the numbers of work queues in schedule, and wait and exit until all
work queues are done in tipc_exit_net(). |
In the Linux kernel, the following vulnerability has been resolved:
bpf, lockdown, audit: Fix buggy SELinux lockdown permission checks
Commit 59438b46471a ("security,lockdown,selinux: implement SELinux lockdown")
added an implementation of the locked_down LSM hook to SELinux, with the aim
to restrict which domains are allowed to perform operations that would breach
lockdown. This is indirectly also getting audit subsystem involved to report
events. The latter is problematic, as reported by Ondrej and Serhei, since it
can bring down the whole system via audit:
1) The audit events that are triggered due to calls to security_locked_down()
can OOM kill a machine, see below details [0].
2) It also seems to be causing a deadlock via avc_has_perm()/slow_avc_audit()
when trying to wake up kauditd, for example, when using trace_sched_switch()
tracepoint, see details in [1]. Triggering this was not via some hypothetical
corner case, but with existing tools like runqlat & runqslower from bcc, for
example, which make use of this tracepoint. Rough call sequence goes like:
rq_lock(rq) -> -------------------------+
trace_sched_switch() -> |
bpf_prog_xyz() -> +-> deadlock
selinux_lockdown() -> |
audit_log_end() -> |
wake_up_interruptible() -> |
try_to_wake_up() -> |
rq_lock(rq) --------------+
What's worse is that the intention of 59438b46471a to further restrict lockdown
settings for specific applications in respect to the global lockdown policy is
completely broken for BPF. The SELinux policy rule for the current lockdown check
looks something like this:
allow <who> <who> : lockdown { <reason> };
However, this doesn't match with the 'current' task where the security_locked_down()
is executed, example: httpd does a syscall. There is a tracing program attached
to the syscall which triggers a BPF program to run, which ends up doing a
bpf_probe_read_kernel{,_str}() helper call. The selinux_lockdown() hook does
the permission check against 'current', that is, httpd in this example. httpd
has literally zero relation to this tracing program, and it would be nonsensical
having to write an SELinux policy rule against httpd to let the tracing helper
pass. The policy in this case needs to be against the entity that is installing
the BPF program. For example, if bpftrace would generate a histogram of syscall
counts by user space application:
bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }'
bpftrace would then go and generate a BPF program from this internally. One way
of doing it [for the sake of the example] could be to call bpf_get_current_task()
helper and then access current->comm via one of bpf_probe_read_kernel{,_str}()
helpers. So the program itself has nothing to do with httpd or any other random
app doing a syscall here. The BPF program _explicitly initiated_ the lockdown
check. The allow/deny policy belongs in the context of bpftrace: meaning, you
want to grant bpftrace access to use these helpers, but other tracers on the
system like my_random_tracer _not_.
Therefore fix all three issues at the same time by taking a completely different
approach for the security_locked_down() hook, that is, move the check into the
program verification phase where we actually retrieve the BPF func proto. This
also reliably gets the task (current) that is trying to install the BPF tracing
program, e.g. bpftrace/bcc/perf/systemtap/etc, and it also fixes the OOM since
we're moving this out of the BPF helper's fast-path which can be called several
millions of times per second.
The check is then also in line with other security_locked_down() hooks in the
system where the enforcement is performed at open/load time, for example,
open_kcore() for /proc/kcore access or module_sig_check() for module signatures
just to pick f
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
mac80211: fix locking in ieee80211_start_ap error path
We need to hold the local->mtx to release the channel context,
as even encoded by the lockdep_assert_held() there. Fix it. |
In the Linux kernel, the following vulnerability has been resolved:
soc/tegra: regulators: Fix locking up when voltage-spread is out of range
Fix voltage coupler lockup which happens when voltage-spread is out
of range due to a bug in the code. The max-spread requirement shall be
accounted when CPU regulator doesn't have consumers. This problem is
observed on Tegra30 Ouya game console once system-wide DVFS is enabled
in a device-tree. |
In the Linux kernel, the following vulnerability has been resolved:
nvmet-tcp: fix incorrect locking in state_change sk callback
We are not changing anything in the TCP connection state so
we should not take a write_lock but rather a read lock.
This caused a deadlock when running nvmet-tcp and nvme-tcp
on the same system, where state_change callbacks on the
host and on the controller side have causal relationship
and made lockdep report on this with blktests:
================================
WARNING: inconsistent lock state
5.12.0-rc3 #1 Tainted: G I
--------------------------------
inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-R} usage.
nvme/1324 [HC0[0]:SC0[0]:HE1:SE1] takes:
ffff888363151000 (clock-AF_INET){++-?}-{2:2}, at: nvme_tcp_state_change+0x21/0x150 [nvme_tcp]
{IN-SOFTIRQ-W} state was registered at:
__lock_acquire+0x79b/0x18d0
lock_acquire+0x1ca/0x480
_raw_write_lock_bh+0x39/0x80
nvmet_tcp_state_change+0x21/0x170 [nvmet_tcp]
tcp_fin+0x2a8/0x780
tcp_data_queue+0xf94/0x1f20
tcp_rcv_established+0x6ba/0x1f00
tcp_v4_do_rcv+0x502/0x760
tcp_v4_rcv+0x257e/0x3430
ip_protocol_deliver_rcu+0x69/0x6a0
ip_local_deliver_finish+0x1e2/0x2f0
ip_local_deliver+0x1a2/0x420
ip_rcv+0x4fb/0x6b0
__netif_receive_skb_one_core+0x162/0x1b0
process_backlog+0x1ff/0x770
__napi_poll.constprop.0+0xa9/0x5c0
net_rx_action+0x7b3/0xb30
__do_softirq+0x1f0/0x940
do_softirq+0xa1/0xd0
__local_bh_enable_ip+0xd8/0x100
ip_finish_output2+0x6b7/0x18a0
__ip_queue_xmit+0x706/0x1aa0
__tcp_transmit_skb+0x2068/0x2e20
tcp_write_xmit+0xc9e/0x2bb0
__tcp_push_pending_frames+0x92/0x310
inet_shutdown+0x158/0x300
__nvme_tcp_stop_queue+0x36/0x270 [nvme_tcp]
nvme_tcp_stop_queue+0x87/0xb0 [nvme_tcp]
nvme_tcp_teardown_admin_queue+0x69/0xe0 [nvme_tcp]
nvme_do_delete_ctrl+0x100/0x10c [nvme_core]
nvme_sysfs_delete.cold+0x8/0xd [nvme_core]
kernfs_fop_write_iter+0x2c7/0x460
new_sync_write+0x36c/0x610
vfs_write+0x5c0/0x870
ksys_write+0xf9/0x1d0
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
irq event stamp: 10687
hardirqs last enabled at (10687): [<ffffffff9ec376bd>] _raw_spin_unlock_irqrestore+0x2d/0x40
hardirqs last disabled at (10686): [<ffffffff9ec374d8>] _raw_spin_lock_irqsave+0x68/0x90
softirqs last enabled at (10684): [<ffffffff9f000608>] __do_softirq+0x608/0x940
softirqs last disabled at (10649): [<ffffffff9cdedd31>] do_softirq+0xa1/0xd0
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(clock-AF_INET);
<Interrupt>
lock(clock-AF_INET);
*** DEADLOCK ***
5 locks held by nvme/1324:
#0: ffff8884a01fe470 (sb_writers#4){.+.+}-{0:0}, at: ksys_write+0xf9/0x1d0
#1: ffff8886e435c090 (&of->mutex){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x216/0x460
#2: ffff888104d90c38 (kn->active#255){++++}-{0:0}, at: kernfs_remove_self+0x22d/0x330
#3: ffff8884634538d0 (&queue->queue_lock){+.+.}-{3:3}, at: nvme_tcp_stop_queue+0x52/0xb0 [nvme_tcp]
#4: ffff888363150d30 (sk_lock-AF_INET){+.+.}-{0:0}, at: inet_shutdown+0x59/0x300
stack backtrace:
CPU: 26 PID: 1324 Comm: nvme Tainted: G I 5.12.0-rc3 #1
Hardware name: Dell Inc. PowerEdge R640/06NR82, BIOS 2.10.0 11/12/2020
Call Trace:
dump_stack+0x93/0xc2
mark_lock_irq.cold+0x2c/0xb3
? verify_lock_unused+0x390/0x390
? stack_trace_consume_entry+0x160/0x160
? lock_downgrade+0x100/0x100
? save_trace+0x88/0x5e0
? _raw_spin_unlock_irqrestore+0x2d/0x40
mark_lock+0x530/0x1470
? mark_lock_irq+0x1d10/0x1d10
? enqueue_timer+0x660/0x660
mark_usage+0x215/0x2a0
__lock_acquire+0x79b/0x18d0
? tcp_schedule_loss_probe.part.0+0x38c/0x520
lock_acquire+0x1ca/0x480
? nvme_tcp_state_change+0x21/0x150 [nvme_tcp]
? rcu_read_unlock+0x40/0x40
? tcp_mtu_probe+0x1ae0/0x1ae0
? kmalloc_reserve+0xa0/0xa0
? sysfs_file_ops+0x170/0x170
_raw_read_lock+0x3d/0xa0
? nvme_tcp_state_change+0x21/0x150 [nvme_tcp]
nvme_tcp_state_change+0x21/0x150 [nvme_tcp]
? sysfs_file_ops
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: avoid deadlock between hci_dev->lock and socket lock
Commit eab2404ba798 ("Bluetooth: Add BT_PHY socket option") added a
dependency between socket lock and hci_dev->lock that could lead to
deadlock.
It turns out that hci_conn_get_phy() is not in any way relying on hdev
being immutable during the runtime of this function, neither does it even
look at any of the members of hdev, and as such there is no need to hold
that lock.
This fixes the lockdep splat below:
======================================================
WARNING: possible circular locking dependency detected
5.12.0-rc1-00026-g73d464503354 #10 Not tainted
------------------------------------------------------
bluetoothd/1118 is trying to acquire lock:
ffff8f078383c078 (&hdev->lock){+.+.}-{3:3}, at: hci_conn_get_phy+0x1c/0x150 [bluetooth]
but task is already holding lock:
ffff8f07e831d920 (sk_lock-AF_BLUETOOTH-BTPROTO_L2CAP){+.+.}-{0:0}, at: l2cap_sock_getsockopt+0x8b/0x610
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (sk_lock-AF_BLUETOOTH-BTPROTO_L2CAP){+.+.}-{0:0}:
lock_sock_nested+0x72/0xa0
l2cap_sock_ready_cb+0x18/0x70 [bluetooth]
l2cap_config_rsp+0x27a/0x520 [bluetooth]
l2cap_sig_channel+0x658/0x1330 [bluetooth]
l2cap_recv_frame+0x1ba/0x310 [bluetooth]
hci_rx_work+0x1cc/0x640 [bluetooth]
process_one_work+0x244/0x5f0
worker_thread+0x3c/0x380
kthread+0x13e/0x160
ret_from_fork+0x22/0x30
-> #2 (&chan->lock#2/1){+.+.}-{3:3}:
__mutex_lock+0xa3/0xa10
l2cap_chan_connect+0x33a/0x940 [bluetooth]
l2cap_sock_connect+0x141/0x2a0 [bluetooth]
__sys_connect+0x9b/0xc0
__x64_sys_connect+0x16/0x20
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #1 (&conn->chan_lock){+.+.}-{3:3}:
__mutex_lock+0xa3/0xa10
l2cap_chan_connect+0x322/0x940 [bluetooth]
l2cap_sock_connect+0x141/0x2a0 [bluetooth]
__sys_connect+0x9b/0xc0
__x64_sys_connect+0x16/0x20
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #0 (&hdev->lock){+.+.}-{3:3}:
__lock_acquire+0x147a/0x1a50
lock_acquire+0x277/0x3d0
__mutex_lock+0xa3/0xa10
hci_conn_get_phy+0x1c/0x150 [bluetooth]
l2cap_sock_getsockopt+0x5a9/0x610 [bluetooth]
__sys_getsockopt+0xcc/0x200
__x64_sys_getsockopt+0x20/0x30
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
other info that might help us debug this:
Chain exists of:
&hdev->lock --> &chan->lock#2/1 --> sk_lock-AF_BLUETOOTH-BTPROTO_L2CAP
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(sk_lock-AF_BLUETOOTH-BTPROTO_L2CAP);
lock(&chan->lock#2/1);
lock(sk_lock-AF_BLUETOOTH-BTPROTO_L2CAP);
lock(&hdev->lock);
*** DEADLOCK ***
1 lock held by bluetoothd/1118:
#0: ffff8f07e831d920 (sk_lock-AF_BLUETOOTH-BTPROTO_L2CAP){+.+.}-{0:0}, at: l2cap_sock_getsockopt+0x8b/0x610 [bluetooth]
stack backtrace:
CPU: 3 PID: 1118 Comm: bluetoothd Not tainted 5.12.0-rc1-00026-g73d464503354 #10
Hardware name: LENOVO 20K5S22R00/20K5S22R00, BIOS R0IET38W (1.16 ) 05/31/2017
Call Trace:
dump_stack+0x7f/0xa1
check_noncircular+0x105/0x120
? __lock_acquire+0x147a/0x1a50
__lock_acquire+0x147a/0x1a50
lock_acquire+0x277/0x3d0
? hci_conn_get_phy+0x1c/0x150 [bluetooth]
? __lock_acquire+0x2e1/0x1a50
? lock_is_held_type+0xb4/0x120
? hci_conn_get_phy+0x1c/0x150 [bluetooth]
__mutex_lock+0xa3/0xa10
? hci_conn_get_phy+0x1c/0x150 [bluetooth]
? lock_acquire+0x277/0x3d0
? mark_held_locks+0x49/0x70
? mark_held_locks+0x49/0x70
? hci_conn_get_phy+0x1c/0x150 [bluetooth]
hci_conn_get_phy+0x
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
nitro_enclaves: Use get_user_pages_unlocked() call to handle mmap assert
After commit 5b78ed24e8ec ("mm/pagemap: add mmap_assert_locked()
annotations to find_vma*()"), the call to get_user_pages() will trigger
the mmap assert.
static inline void mmap_assert_locked(struct mm_struct *mm)
{
lockdep_assert_held(&mm->mmap_lock);
VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_lock), mm);
}
[ 62.521410] kernel BUG at include/linux/mmap_lock.h:156!
...........................................................
[ 62.538938] RIP: 0010:find_vma+0x32/0x80
...........................................................
[ 62.605889] Call Trace:
[ 62.608502] <TASK>
[ 62.610956] ? lock_timer_base+0x61/0x80
[ 62.614106] find_extend_vma+0x19/0x80
[ 62.617195] __get_user_pages+0x9b/0x6a0
[ 62.620356] __gup_longterm_locked+0x42d/0x450
[ 62.623721] ? finish_wait+0x41/0x80
[ 62.626748] ? __kmalloc+0x178/0x2f0
[ 62.629768] ne_set_user_memory_region_ioctl.isra.0+0x225/0x6a0 [nitro_enclaves]
[ 62.635776] ne_enclave_ioctl+0x1cf/0x6d7 [nitro_enclaves]
[ 62.639541] __x64_sys_ioctl+0x82/0xb0
[ 62.642620] do_syscall_64+0x3b/0x90
[ 62.645642] entry_SYSCALL_64_after_hwframe+0x44/0xae
Use get_user_pages_unlocked() when setting the enclave memory regions.
That's a similar pattern as mmap_read_lock() used together with
get_user_pages(). |
In camera driver, there is a possible memory corruption due to improper locking. This could lead to local denial of service in kernel. |
In camera driver, there is a possible memory corruption due to improper locking. This could lead to local denial of service in kernel. |
PJSIP is a free and open source multimedia communication library written in the C language implementing standard based protocols such as SIP, SDP, RTP, STUN, TURN, and ICE. In various parts of PJSIP, when error/failure occurs, it is found that the function returns without releasing the currently held locks. This could result in a system deadlock, which cause a denial of service for the users. No release has yet been made which contains the linked fix commit. All versions up to an including 2.11.1 are affected. Users may need to manually apply the patch. |
Metabase is data visualization software. Prior to versions 0.44.5, 1.44.5, 0.43.7, 1.43.7, 0.42.6, and 1.42.6, it was possible to circumvent locked parameters when requesting data for a question in an embedded dashboard by constructing a malicious request to the backend. This issue is patched in versions 0.44.5, 1.44.5, 0.43.7, 1.43.7, 0.42.6, and 1.42.6. |
Guests can trigger deadlock in Linux netback driver T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] The patch for XSA-392 introduced another issue which might result in a deadlock when trying to free the SKB of a packet dropped due to the XSA-392 handling (CVE-2022-42328). Additionally when dropping packages for other reasons the same deadlock could occur in case of netpoll being active for the interface the xen-netback driver is connected to (CVE-2022-42329). |