CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
The Majestic Before After Image plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'before_label' and 'after_label' parameters in versions less than, or equal to, 2.0.1 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
The Ultra Addons Lite for Elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'Animated Text' field of the Typeout Widget in version 1.1.9 and below due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
The Appy Pie Connect for WooCommerce plugin for WordPress is vulnerable to Privilege Escalation due to missing authorization within the reset_user_password() REST handler in all versions up to, and including, 1.1.2. This makes it possible for unauthenticated attackers to to reset the password of arbitrary users, including administrators, thereby gaining administrative access. |
In the Linux kernel, the following vulnerability has been resolved:
IB/mad: Don't call to function that might sleep while in atomic context
Tracepoints are not allowed to sleep, as such the following splat is
generated due to call to ib_query_pkey() in atomic context.
WARNING: CPU: 0 PID: 1888000 at kernel/trace/ring_buffer.c:2492 rb_commit+0xc1/0x220
CPU: 0 PID: 1888000 Comm: kworker/u9:0 Kdump: loaded Tainted: G OE --------- - - 4.18.0-305.3.1.el8.x86_64 #1
Hardware name: Red Hat KVM, BIOS 1.13.0-2.module_el8.3.0+555+a55c8938 04/01/2014
Workqueue: ib-comp-unb-wq ib_cq_poll_work [ib_core]
RIP: 0010:rb_commit+0xc1/0x220
RSP: 0000:ffffa8ac80f9bca0 EFLAGS: 00010202
RAX: ffff8951c7c01300 RBX: ffff8951c7c14a00 RCX: 0000000000000246
RDX: ffff8951c707c000 RSI: ffff8951c707c57c RDI: ffff8951c7c14a00
RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
R10: ffff8951c7c01300 R11: 0000000000000001 R12: 0000000000000246
R13: 0000000000000000 R14: ffffffff964c70c0 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8951fbc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f20e8f39010 CR3: 000000002ca10005 CR4: 0000000000170ef0
Call Trace:
ring_buffer_unlock_commit+0x1d/0xa0
trace_buffer_unlock_commit_regs+0x3b/0x1b0
trace_event_buffer_commit+0x67/0x1d0
trace_event_raw_event_ib_mad_recv_done_handler+0x11c/0x160 [ib_core]
ib_mad_recv_done+0x48b/0xc10 [ib_core]
? trace_event_raw_event_cq_poll+0x6f/0xb0 [ib_core]
__ib_process_cq+0x91/0x1c0 [ib_core]
ib_cq_poll_work+0x26/0x80 [ib_core]
process_one_work+0x1a7/0x360
? create_worker+0x1a0/0x1a0
worker_thread+0x30/0x390
? create_worker+0x1a0/0x1a0
kthread+0x116/0x130
? kthread_flush_work_fn+0x10/0x10
ret_from_fork+0x35/0x40
---[ end trace 78ba8509d3830a16 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
rtc: class: Fix potential memleak in devm_rtc_allocate_device()
devm_rtc_allocate_device() will alloc a rtc_device first, and then run
dev_set_name(). If dev_set_name() failed, the rtc_device will memleak.
Move devm_add_action_or_reset() in front of dev_set_name() to prevent
memleak.
unreferenced object 0xffff888110a53000 (size 2048):
comm "python3", pid 470, jiffies 4296078308 (age 58.882s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 08 30 a5 10 81 88 ff ff .........0......
08 30 a5 10 81 88 ff ff 00 00 00 00 00 00 00 00 .0..............
backtrace:
[<000000004aac0364>] kmalloc_trace+0x21/0x110
[<000000000ff02202>] devm_rtc_allocate_device+0xd4/0x400
[<000000001bdf5639>] devm_rtc_device_register+0x1a/0x80
[<00000000351bf81c>] rx4581_probe+0xdd/0x110 [rtc_rx4581]
[<00000000f0eba0ae>] spi_probe+0xde/0x130
[<00000000bff89ee8>] really_probe+0x175/0x3f0
[<00000000128e8d84>] __driver_probe_device+0xe6/0x170
[<00000000ee5bf913>] device_driver_attach+0x32/0x80
[<00000000f3f28f92>] bind_store+0x10b/0x1a0
[<000000009ff812d8>] drv_attr_store+0x49/0x70
[<000000008139c323>] sysfs_kf_write+0x8d/0xb0
[<00000000b6146e01>] kernfs_fop_write_iter+0x214/0x2d0
[<00000000ecbe3895>] vfs_write+0x61a/0x7d0
[<00000000aa2196ea>] ksys_write+0xc8/0x190
[<0000000046a600f5>] do_syscall_64+0x37/0x90
[<00000000541a336f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
In the Linux kernel, the following vulnerability has been resolved:
memory: pl353-smc: Fix refcount leak bug in pl353_smc_probe()
The break of for_each_available_child_of_node() needs a
corresponding of_node_put() when the reference 'child' is not
used anymore. Here we do not need to call of_node_put() in
fail path as '!match' means no break.
While the of_platform_device_create() will created a new
reference by 'child' but it has considered the refcounting. |
In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Clean up si_domain in the init_dmars() error path
A splat from kmem_cache_destroy() was seen with a kernel prior to
commit ee2653bbe89d ("iommu/vt-d: Remove domain and devinfo mempool")
when there was a failure in init_dmars(), because the iommu_domain
cache still had objects. While the mempool code is now gone, there
still is a leak of the si_domain memory if init_dmars() fails. So
clean up si_domain in the init_dmars() error path. |
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: Fix return type of netcp_ndo_start_xmit()
With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG),
indirect call targets are validated against the expected function
pointer prototype to make sure the call target is valid to help mitigate
ROP attacks. If they are not identical, there is a failure at run time,
which manifests as either a kernel panic or thread getting killed. A
proposed warning in clang aims to catch these at compile time, which
reveals:
drivers/net/ethernet/ti/netcp_core.c:1944:21: error: incompatible function pointer types initializing 'netdev_tx_t (*)(struct sk_buff *, struct net_device *)' (aka 'enum netdev_tx (*)(struct sk_buff *, struct net_device *)') with an expression of type 'int (struct sk_buff *, struct net_device *)' [-Werror,-Wincompatible-function-pointer-types-strict]
.ndo_start_xmit = netcp_ndo_start_xmit,
^~~~~~~~~~~~~~~~~~~~
1 error generated.
->ndo_start_xmit() in 'struct net_device_ops' expects a return type of
'netdev_tx_t', not 'int'. Adjust the return type of
netcp_ndo_start_xmit() to match the prototype's to resolve the warning
and CFI failure. |
In the Linux kernel, the following vulnerability has been resolved:
NFSD: Protect against send buffer overflow in NFSv3 READDIR
Since before the git era, NFSD has conserved the number of pages
held by each nfsd thread by combining the RPC receive and send
buffers into a single array of pages. This works because there are
no cases where an operation needs a large RPC Call message and a
large RPC Reply message at the same time.
Once an RPC Call has been received, svc_process() updates
svc_rqst::rq_res to describe the part of rq_pages that can be
used for constructing the Reply. This means that the send buffer
(rq_res) shrinks when the received RPC record containing the RPC
Call is large.
A client can force this shrinkage on TCP by sending a correctly-
formed RPC Call header contained in an RPC record that is
excessively large. The full maximum payload size cannot be
constructed in that case.
Thanks to Aleksi Illikainen and Kari Hulkko for uncovering this
issue. |
In the Linux kernel, the following vulnerability has been resolved:
drm/msm: fix use-after-free on probe deferral
The bridge counter was never reset when tearing down the DRM device so
that stale pointers to deallocated structures would be accessed on the
next tear down (e.g. after a second late bind deferral).
Given enough bridges and a few probe deferrals this could currently also
lead to data beyond the bridge array being corrupted.
Patchwork: https://patchwork.freedesktop.org/patch/502665/ |
The Ultimate Viral Quiz plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.0. This is due to missing or incorrect nonce validation on thesave_options() function. This makes it possible for unauthenticated attackers to update the plugin's settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
The WP Dispatcher plugin for WordPress is vulnerable to SQL Injection via the ‘id’ parameter in all versions up to, and including, 1.2.0 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
The WPRecovery plugin for WordPress is vulnerable to SQL Injection via the 'data[id]' parameter in all versions up to, and including, 2.0. This is due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. Additionally, the result of this SQL injection is passed directly to PHP's unlink() function, allowing attackers to delete arbitrary files on the server by injecting file paths through the SQL query. |
The Integrate Dynamics 365 CRM plugin for WordPress is vulnerable to unauthorized access in all versions up to, and including, 1.0.9. This is due to missing capability checks and nonce verification on functions hooked to 'init'. This makes it possible for unauthenticated attackers to deactivate the plugin, tamper with OAuth configuration, and trigger test connections that expose sensitive data via direct request to vulnerable endpoints granted they can craft malicious requests with specific parameters. |
In Zabbix Agent and Agent 2 on Windows, the OpenSSL configuration file is loaded from a path writable by low-privileged users, allowing malicious modification and potential local privilege escalation by injecting a DLL. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix smbdirect_recv_io leak in smbd_negotiate() error path
During tests of another unrelated patch I was able to trigger this
error: Objects remaining on __kmem_cache_shutdown() |
In the Linux kernel, the following vulnerability has been resolved:
crypto: af_alg - Set merge to zero early in af_alg_sendmsg
If an error causes af_alg_sendmsg to abort, ctx->merge may contain
a garbage value from the previous loop. This may then trigger a
crash on the next entry into af_alg_sendmsg when it attempts to do
a merge that can't be done.
Fix this by setting ctx->merge to zero near the start of the loop. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: codec: sma1307: Fix memory corruption in sma1307_setting_loaded()
The sma1307->set.header_size is how many integers are in the header
(there are 8 of them) but instead of allocating space of 8 integers
we allocate 8 bytes. This leads to memory corruption when we copy data
it on the next line:
memcpy(sma1307->set.header, data,
sma1307->set.header_size * sizeof(int));
Also since we're immediately copying over the memory in ->set.header,
there is no need to zero it in the allocator. Use devm_kmalloc_array()
to allocate the memory instead. |
In the Linux kernel, the following vulnerability has been resolved:
net: rfkill: gpio: Fix crash due to dereferencering uninitialized pointer
Since commit 7d5e9737efda ("net: rfkill: gpio: get the name and type from
device property") rfkill_find_type() gets called with the possibly
uninitialized "const char *type_name;" local variable.
On x86 systems when rfkill-gpio binds to a "BCM4752" or "LNV4752"
acpi_device, the rfkill->type is set based on the ACPI acpi_device_id:
rfkill->type = (unsigned)id->driver_data;
and there is no "type" property so device_property_read_string() will fail
and leave type_name uninitialized, leading to a potential crash.
rfkill_find_type() does accept a NULL pointer, fix the potential crash
by initializing type_name to NULL.
Note likely sofar this has not been caught because:
1. Not many x86 machines actually have a "BCM4752"/"LNV4752" acpi_device
2. The stack happened to contain NULL where type_name is stored |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: qcom: q6apm-lpass-dais: Fix NULL pointer dereference if source graph failed
If earlier opening of source graph fails (e.g. ADSP rejects due to
incorrect audioreach topology), the graph is closed and
"dai_data->graph[dai->id]" is assigned NULL. Preparing the DAI for sink
graph continues though and next call to q6apm_lpass_dai_prepare()
receives dai_data->graph[dai->id]=NULL leading to NULL pointer
exception:
qcom-apm gprsvc:service:2:1: Error (1) Processing 0x01001002 cmd
qcom-apm gprsvc:service:2:1: DSP returned error[1001002] 1
q6apm-lpass-dais 30000000.remoteproc:glink-edge:gpr:service@1:bedais: fail to start APM port 78
q6apm-lpass-dais 30000000.remoteproc:glink-edge:gpr:service@1:bedais: ASoC: error at snd_soc_pcm_dai_prepare on TX_CODEC_DMA_TX_3: -22
Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a8
...
Call trace:
q6apm_graph_media_format_pcm+0x48/0x120 (P)
q6apm_lpass_dai_prepare+0x110/0x1b4
snd_soc_pcm_dai_prepare+0x74/0x108
__soc_pcm_prepare+0x44/0x160
dpcm_be_dai_prepare+0x124/0x1c0 |