| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: Do not validate SSPP when it is not ready
Current code will validate current plane and previous plane to
confirm they can share a SSPP with multi-rect mode. The SSPP
is already allocated for previous plane, while current plane
is not associated with any SSPP yet. Null pointer is referenced
when validating the SSPP of current plane. Skip SSPP validation
for current plane.
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=0000000888ac3000
[0000000000000020] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] SMP
Modules linked in:
CPU: 4 UID: 0 PID: 1891 Comm: modetest Tainted: G S 6.15.0-rc2-g3ee3f6e1202e #335 PREEMPT
Tainted: [S]=CPU_OUT_OF_SPEC
Hardware name: SM8650 EV1 rev1 4slam 2et (DT)
pstate: 63400009 (nZCv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : dpu_plane_is_multirect_capable+0x68/0x90
lr : dpu_assign_plane_resources+0x288/0x410
sp : ffff800093dcb770
x29: ffff800093dcb770 x28: 0000000000002000 x27: ffff000817c6c000
x26: ffff000806b46368 x25: ffff0008013f6080 x24: ffff00080cbf4800
x23: ffff000810842680 x22: ffff0008013f1080 x21: ffff00080cc86080
x20: ffff000806b463b0 x19: ffff00080cbf5a00 x18: 00000000ffffffff
x17: 707a5f657a696c61 x16: 0000000000000003 x15: 0000000000002200
x14: 00000000ffffffff x13: 00aaaaaa00aaaaaa x12: 0000000000000000
x11: ffff000817c6e2b8 x10: 0000000000000000 x9 : ffff80008106a950
x8 : ffff00080cbf48f4 x7 : 0000000000000000 x6 : 0000000000000000
x5 : 0000000000000000 x4 : 0000000000000438 x3 : 0000000000000438
x2 : ffff800082e245e0 x1 : 0000000000000008 x0 : 0000000000000000
Call trace:
dpu_plane_is_multirect_capable+0x68/0x90 (P)
dpu_crtc_atomic_check+0x5bc/0x650
drm_atomic_helper_check_planes+0x13c/0x220
drm_atomic_helper_check+0x58/0xb8
msm_atomic_check+0xd8/0xf0
drm_atomic_check_only+0x4a8/0x968
drm_atomic_commit+0x50/0xd8
drm_atomic_helper_update_plane+0x140/0x188
__setplane_atomic+0xfc/0x148
drm_mode_setplane+0x164/0x378
drm_ioctl_kernel+0xc0/0x140
drm_ioctl+0x20c/0x500
__arm64_sys_ioctl+0xbc/0xf8
invoke_syscall+0x50/0x120
el0_svc_common.constprop.0+0x48/0xf8
do_el0_svc+0x28/0x40
el0_svc+0x30/0xd0
el0t_64_sync_handler+0x144/0x168
el0t_64_sync+0x198/0x1a0
Code: b9402021 370fffc1 f9401441 3707ff81 (f94010a1)
---[ end trace 0000000000000000 ]---
Patchwork: https://patchwork.freedesktop.org/patch/669224/ |
| In the Linux kernel, the following vulnerability has been resolved:
tcp_metrics: use dst_dev_net_rcu()
Replace three dst_dev() with a lockdep enabled helper. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv, bpf: Sign extend struct ops return values properly
The ns_bpf_qdisc selftest triggers a kernel panic:
Unable to handle kernel paging request at virtual address ffffffffa38dbf58
Current test_progs pgtable: 4K pagesize, 57-bit VAs, pgdp=0x00000001109cc000
[ffffffffa38dbf58] pgd=000000011fffd801, p4d=000000011fffd401, pud=000000011fffd001, pmd=0000000000000000
Oops [#1]
Modules linked in: bpf_testmod(OE) xt_conntrack nls_iso8859_1 [...] [last unloaded: bpf_testmod(OE)]
CPU: 1 UID: 0 PID: 23584 Comm: test_progs Tainted: G W OE 6.17.0-rc1-g2465bb83e0b4 #1 NONE
Tainted: [W]=WARN, [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: Unknown Unknown Product/Unknown Product, BIOS 2024.01+dfsg-1ubuntu5.1 01/01/2024
epc : __qdisc_run+0x82/0x6f0
ra : __qdisc_run+0x6e/0x6f0
epc : ffffffff80bd5c7a ra : ffffffff80bd5c66 sp : ff2000000eecb550
gp : ffffffff82472098 tp : ff60000096895940 t0 : ffffffff8001f180
t1 : ffffffff801e1664 t2 : 0000000000000000 s0 : ff2000000eecb5d0
s1 : ff60000093a6a600 a0 : ffffffffa38dbee8 a1 : 0000000000000001
a2 : ff2000000eecb510 a3 : 0000000000000001 a4 : 0000000000000000
a5 : 0000000000000010 a6 : 0000000000000000 a7 : 0000000000735049
s2 : ffffffffa38dbee8 s3 : 0000000000000040 s4 : ff6000008bcda000
s5 : 0000000000000008 s6 : ff60000093a6a680 s7 : ff60000093a6a6f0
s8 : ff60000093a6a6ac s9 : ff60000093140000 s10: 0000000000000000
s11: ff2000000eecb9d0 t3 : 0000000000000000 t4 : 0000000000ff0000
t5 : 0000000000000000 t6 : ff60000093a6a8b6
status: 0000000200000120 badaddr: ffffffffa38dbf58 cause: 000000000000000d
[<ffffffff80bd5c7a>] __qdisc_run+0x82/0x6f0
[<ffffffff80b6fe58>] __dev_queue_xmit+0x4c0/0x1128
[<ffffffff80b80ae0>] neigh_resolve_output+0xd0/0x170
[<ffffffff80d2daf6>] ip6_finish_output2+0x226/0x6c8
[<ffffffff80d31254>] ip6_finish_output+0x10c/0x2a0
[<ffffffff80d31446>] ip6_output+0x5e/0x178
[<ffffffff80d2e232>] ip6_xmit+0x29a/0x608
[<ffffffff80d6f4c6>] inet6_csk_xmit+0xe6/0x140
[<ffffffff80c985e4>] __tcp_transmit_skb+0x45c/0xaa8
[<ffffffff80c995fe>] tcp_connect+0x9ce/0xd10
[<ffffffff80d66524>] tcp_v6_connect+0x4ac/0x5e8
[<ffffffff80cc19b8>] __inet_stream_connect+0xd8/0x318
[<ffffffff80cc1c36>] inet_stream_connect+0x3e/0x68
[<ffffffff80b42b20>] __sys_connect_file+0x50/0x88
[<ffffffff80b42bee>] __sys_connect+0x96/0xc8
[<ffffffff80b42c40>] __riscv_sys_connect+0x20/0x30
[<ffffffff80e5bcae>] do_trap_ecall_u+0x256/0x378
[<ffffffff80e69af2>] handle_exception+0x14a/0x156
Code: 892a 0363 1205 489c 8bc1 c7e5 2d03 084a 2703 080a (2783) 0709
---[ end trace 0000000000000000 ]---
The bpf_fifo_dequeue prog returns a skb which is a pointer. The pointer
is treated as a 32bit value and sign extend to 64bit in epilogue. This
behavior is right for most bpf prog types but wrong for struct ops which
requires RISC-V ABI.
So let's sign extend struct ops return values according to the function
model and RISC-V ABI([0]).
[0]: https://riscv.org/wp-content/uploads/2024/12/riscv-calling.pdf |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix slab-out-of-bounds read in hfsplus_uni2asc()
BUG: KASAN: slab-out-of-bounds in hfsplus_uni2asc+0xa71/0xb90 fs/hfsplus/unicode.c:186
Read of size 2 at addr ffff8880289ef218 by task syz.6.248/14290
CPU: 0 UID: 0 PID: 14290 Comm: syz.6.248 Not tainted 6.16.4 #1 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1b0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x5f0 mm/kasan/report.c:482
kasan_report+0xca/0x100 mm/kasan/report.c:595
hfsplus_uni2asc+0xa71/0xb90 fs/hfsplus/unicode.c:186
hfsplus_listxattr+0x5b6/0xbd0 fs/hfsplus/xattr.c:738
vfs_listxattr+0xbe/0x140 fs/xattr.c:493
listxattr+0xee/0x190 fs/xattr.c:924
filename_listxattr fs/xattr.c:958 [inline]
path_listxattrat+0x143/0x360 fs/xattr.c:988
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcb/0x4c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fe0e9fae16d
Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fe0eae67f98 EFLAGS: 00000246 ORIG_RAX: 00000000000000c3
RAX: ffffffffffffffda RBX: 00007fe0ea205fa0 RCX: 00007fe0e9fae16d
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000200000000000
RBP: 00007fe0ea0480f0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007fe0ea206038 R14: 00007fe0ea205fa0 R15: 00007fe0eae48000
</TASK>
Allocated by task 14290:
kasan_save_stack+0x24/0x50 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__do_kmalloc_node mm/slub.c:4333 [inline]
__kmalloc_noprof+0x219/0x540 mm/slub.c:4345
kmalloc_noprof include/linux/slab.h:909 [inline]
hfsplus_find_init+0x95/0x1f0 fs/hfsplus/bfind.c:21
hfsplus_listxattr+0x331/0xbd0 fs/hfsplus/xattr.c:697
vfs_listxattr+0xbe/0x140 fs/xattr.c:493
listxattr+0xee/0x190 fs/xattr.c:924
filename_listxattr fs/xattr.c:958 [inline]
path_listxattrat+0x143/0x360 fs/xattr.c:988
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcb/0x4c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
When hfsplus_uni2asc is called from hfsplus_listxattr,
it actually passes in a struct hfsplus_attr_unistr*.
The size of the corresponding structure is different from that of hfsplus_unistr,
so the previous fix (94458781aee6) is insufficient.
The pointer on the unicode buffer is still going beyond the allocated memory.
This patch introduces two warpper functions hfsplus_uni2asc_xattr_str and
hfsplus_uni2asc_str to process two unicode buffers,
struct hfsplus_attr_unistr* and struct hfsplus_unistr* respectively.
When ustrlen value is bigger than the allocated memory size,
the ustrlen value is limited to an safe size. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Disallow dirty tracking if incoherent page walk
Dirty page tracking relies on the IOMMU atomically updating the dirty bit
in the paging-structure entry. For this operation to succeed, the paging-
structure memory must be coherent between the IOMMU and the CPU. In
another word, if the iommu page walk is incoherent, dirty page tracking
doesn't work.
The Intel VT-d specification, Section 3.10 "Snoop Behavior" states:
"Remapping hardware encountering the need to atomically update A/EA/D bits
in a paging-structure entry that is not snooped will result in a non-
recoverable fault."
To prevent an IOMMU from being incorrectly configured for dirty page
tracking when it is operating in an incoherent mode, mark SSADS as
supported only when both ecap_slads and ecap_smpwc are supported. |
| In the Linux kernel, the following vulnerability has been resolved:
coresight: trbe: Return NULL pointer for allocation failures
When the TRBE driver fails to allocate a buffer, it currently returns
the error code "-ENOMEM". However, the caller etm_setup_aux() only
checks for a NULL pointer, so it misses the error. As a result, the
driver continues and eventually causes a kernel panic.
Fix this by returning a NULL pointer from arm_trbe_alloc_buffer() on
allocation failures. This allows that the callers can properly handle
the failure. |
| In the Linux kernel, the following vulnerability has been resolved:
RISC-V: KVM: Write hgatp register with valid mode bits
According to the RISC-V Privileged Architecture Spec, when MODE=Bare
is selected,software must write zero to the remaining fields of hgatp.
We have detected the valid mode supported by the HW before, So using a
valid mode to detect how many vmid bits are supported. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: Fix obj leak in VM_BIND error path
If we fail a handle-lookup part way thru, we need to drop the already
obtained obj references.
Patchwork: https://patchwork.freedesktop.org/patch/669784/ |
| The Auto Featured Image (Auto Post Thumbnail) plugin for WordPress is vulnerable to Server-Side Request Forgery in all versions up to, and including, 4.1.7 via the upload_to_library function. This makes it possible for authenticated attackers, with Author-level access and above, to make web requests to arbitrary locations originating from the web application and can be used to query and modify information from internal services. On Cloud instances, this issue allows for metadata retrieval. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix UAF issue in f2fs_merge_page_bio()
As JY reported in bugzilla [1],
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
pc : [0xffffffe51d249484] f2fs_is_cp_guaranteed+0x70/0x98
lr : [0xffffffe51d24adbc] f2fs_merge_page_bio+0x520/0x6d4
CPU: 3 UID: 0 PID: 6790 Comm: kworker/u16:3 Tainted: P B W OE 6.12.30-android16-5-maybe-dirty-4k #1 5f7701c9cbf727d1eebe77c89bbbeb3371e895e5
Tainted: [P]=PROPRIETARY_MODULE, [B]=BAD_PAGE, [W]=WARN, [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Workqueue: writeback wb_workfn (flush-254:49)
Call trace:
f2fs_is_cp_guaranteed+0x70/0x98
f2fs_inplace_write_data+0x174/0x2f4
f2fs_do_write_data_page+0x214/0x81c
f2fs_write_single_data_page+0x28c/0x764
f2fs_write_data_pages+0x78c/0xce4
do_writepages+0xe8/0x2fc
__writeback_single_inode+0x4c/0x4b4
writeback_sb_inodes+0x314/0x540
__writeback_inodes_wb+0xa4/0xf4
wb_writeback+0x160/0x448
wb_workfn+0x2f0/0x5dc
process_scheduled_works+0x1c8/0x458
worker_thread+0x334/0x3f0
kthread+0x118/0x1ac
ret_from_fork+0x10/0x20
[1] https://bugzilla.kernel.org/show_bug.cgi?id=220575
The panic was caused by UAF issue w/ below race condition:
kworker
- writepages
- f2fs_write_cache_pages
- f2fs_write_single_data_page
- f2fs_do_write_data_page
- f2fs_inplace_write_data
- f2fs_merge_page_bio
- add_inu_page
: cache page #1 into bio & cache bio in
io->bio_list
- f2fs_write_single_data_page
- f2fs_do_write_data_page
- f2fs_inplace_write_data
- f2fs_merge_page_bio
- add_inu_page
: cache page #2 into bio which is linked
in io->bio_list
write
- f2fs_write_begin
: write page #1
- f2fs_folio_wait_writeback
- f2fs_submit_merged_ipu_write
- f2fs_submit_write_bio
: submit bio which inclues page #1 and #2
software IRQ
- f2fs_write_end_io
- fscrypt_free_bounce_page
: freed bounced page which belongs to page #2
- inc_page_count( , WB_DATA_TYPE(data_folio), false)
: data_folio points to fio->encrypted_page
the bounced page can be freed before
accessing it in f2fs_is_cp_guarantee()
It can reproduce w/ below testcase:
Run below script in shell #1:
for ((i=1;i>0;i++)) do xfs_io -f /mnt/f2fs/enc/file \
-c "pwrite 0 32k" -c "fdatasync"
Run below script in shell #2:
for ((i=1;i>0;i++)) do xfs_io -f /mnt/f2fs/enc/file \
-c "pwrite 0 32k" -c "fdatasync"
So, in f2fs_merge_page_bio(), let's avoid using fio->encrypted_page after
commit page into internal ipu cache. |
| In the Linux kernel, the following vulnerability has been resolved:
vhost: vringh: Fix copy_to_iter return value check
The return value of copy_to_iter can't be negative, check whether the
copied length is equal to the requested length instead of checking for
negative values. |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: restrict sockets to TCP and UDP
Recently, syzbot started to abuse NBD with all kinds of sockets.
Commit cf1b2326b734 ("nbd: verify socket is supported during setup")
made sure the socket supported a shutdown() method.
Explicitely accept TCP and UNIX stream sockets. |
| Constellation is the first Confidential Kubernetes. The Constellation CVM image uses LUKS2-encrypted volumes for persistent storage. When opening an encrypted storage device, the CVM uses the libcryptsetup function crypt_activate_by_passhrase. If the VM is successful in opening the partition with the disk encryption key, it treats the volume as confidential. However, due to the unsafe handling of null keyslot algorithms in the cryptsetup 2.8.1, it is possible that the opened volume is not encrypted at all. Cryptsetup prior to version 2.8.1 does not report an error when processing LUKS2-formatted disks that use the cipher_null-ecb algorithm in the keyslot encryption field. This vulnerability is fixed in 2.24.0. |
| Pi-hole Admin Interface is a web interface for managing Pi-hole, a network-level advertisement and internet tracker blocking application. Pi-hole Admin Interface before 6.3 is vulnerable to Carriage Return Line Feed (CRLF) injection. When a request is made to a file ending with the .lp extension, the application performs a redirect without properly sanitizing the input. An attacker can inject carriage return and line feed characters (%0d%0a) to manipulate both the headers and the content of the HTTP response. This enables the injection of arbitrary HTTP response headers, potentially leading to session fixation, cache poisoning, and the weakening or bypassing of browser-based security mechanisms such as Content Security Policy or X-XSS-Protection. This vulnerability is fixed in 6.3. |
| ImageMagick is a software suite to create, edit, compose, or convert bitmap images. ImageMagick versions prior to 7.1.2-8 are vulnerable to denial-of-service due to unsigned integer underflow and division-by-zero in the CLAHEImage function. When tile width or height is zero, unsigned underflow occurs in pointer arithmetic, leading to out-of-bounds memory access, and division-by-zero causes immediate crashes. This issue has been patched in version 7.1.2-8. |
| PILOS (Platform for Interactive Live-Online Seminars) is a frontend for BigBlueButton. Prior to 4.8.0, users with a local account can change their password while logged in. When doing so, all other active sessions are terminated, except for the currently active one. However, the current session’s token remains valid and is not refreshed. If an attacker has previously obtained this session token through another vulnerability, changing the password will not invalidate their access. As a result, the attacker can continue to act as the user even after the password has been changed. This vulnerability is fixed in 4.8.0. |
| An out-of-bounds write vulnerability exists in the XML parser functionality of GCC Productions Inc. Fade In 4.2.0. A specially crafted .fadein file can lead to an out-of-bounds write. An attacker can provide a malicious file to trigger this vulnerability. |
| IBM DB2 High Performance Unload 6.1.0.3, 5.1.0.1, 6.1.0.2, 6.5, 6.5.0.0 IF1, 6.1.0.1, 6.1, and 5.1 could allow an authenticated user to cause the program to crash due an out of bounds write. |
| A vulnerability was identified in code-projects Courier Management System 1.0. This impacts an unknown function of the file /courier/edit-courier.php. The manipulation of the argument OfficeName leads to sql injection. The attack is possible to be carried out remotely. The exploit is publicly available and might be used. |
| IBM Concert Software
1.0.0 through 2.0.0 could allow a user to modify system logs due to improper neutralization of log input. |