| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: kexec: initialize kexec_buf struct in load_other_segments()
Patch series "kexec: Fix invalid field access".
The kexec_buf structure was previously declared without initialization.
commit bf454ec31add ("kexec_file: allow to place kexec_buf randomly")
added a field that is always read but not consistently populated by all
architectures. This un-initialized field will contain garbage.
This is also triggering a UBSAN warning when the uninitialized data was
accessed:
------------[ cut here ]------------
UBSAN: invalid-load in ./include/linux/kexec.h:210:10
load of value 252 is not a valid value for type '_Bool'
Zero-initializing kexec_buf at declaration ensures all fields are cleanly
set, preventing future instances of uninitialized memory being used.
An initial fix was already landed for arm64[0], and this patchset fixes
the problem on the remaining arm64 code and on riscv, as raised by Mark.
Discussions about this problem could be found at[1][2].
This patch (of 3):
The kexec_buf structure was previously declared without initialization.
commit bf454ec31add ("kexec_file: allow to place kexec_buf randomly")
added a field that is always read but not consistently populated by all
architectures. This un-initialized field will contain garbage.
This is also triggering a UBSAN warning when the uninitialized data was
accessed:
------------[ cut here ]------------
UBSAN: invalid-load in ./include/linux/kexec.h:210:10
load of value 252 is not a valid value for type '_Bool'
Zero-initializing kexec_buf at declaration ensures all fields are
cleanly set, preventing future instances of uninitialized memory being
used. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phylink: add lock for serializing concurrent pl->phydev writes with resolver
Currently phylink_resolve() protects itself against concurrent
phylink_bringup_phy() or phylink_disconnect_phy() calls which modify
pl->phydev by relying on pl->state_mutex.
The problem is that in phylink_resolve(), pl->state_mutex is in a lock
inversion state with pl->phydev->lock. So pl->phydev->lock needs to be
acquired prior to pl->state_mutex. But that requires dereferencing
pl->phydev in the first place, and without pl->state_mutex, that is
racy.
Hence the reason for the extra lock. Currently it is redundant, but it
will serve a functional purpose once mutex_lock(&phy->lock) will be
moved outside of the mutex_lock(&pl->state_mutex) section.
Another alternative considered would have been to let phylink_resolve()
acquire the rtnl_mutex, which is also held when phylink_bringup_phy()
and phylink_disconnect_phy() are called. But since phylink_disconnect_phy()
runs under rtnl_lock(), it would deadlock with phylink_resolve() when
calling flush_work(&pl->resolve). Additionally, it would have been
undesirable because it would have unnecessarily blocked many other call
paths as well in the entire kernel, so the smaller-scoped lock was
preferred. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: remove oem i2c adapter on finish
Fixes a bug where unbinding of the GPU would leave the oem i2c adapter
registered resulting in a null pointer dereference when applications try
to access the invalid device.
(cherry picked from commit 89923fb7ead4fdd37b78dd49962d9bb5892403e6) |
| In the Linux kernel, the following vulnerability has been resolved:
net: dev_ioctl: take ops lock in hwtstamp lower paths
ndo hwtstamp callbacks are expected to run under the per-device ops
lock. Make the lower get/set paths consistent with the rest of ndo
invocations.
Kernel log:
WARNING: CPU: 13 PID: 51364 at ./include/net/netdev_lock.h:70 __netdev_update_features+0x4bd/0xe60
...
RIP: 0010:__netdev_update_features+0x4bd/0xe60
...
Call Trace:
<TASK>
netdev_update_features+0x1f/0x60
mlx5_hwtstamp_set+0x181/0x290 [mlx5_core]
mlx5e_hwtstamp_set+0x19/0x30 [mlx5_core]
dev_set_hwtstamp_phylib+0x9f/0x220
dev_set_hwtstamp_phylib+0x9f/0x220
dev_set_hwtstamp+0x13d/0x240
dev_ioctl+0x12f/0x4b0
sock_ioctl+0x171/0x370
__x64_sys_ioctl+0x3f7/0x900
? __sys_setsockopt+0x69/0xb0
do_syscall_64+0x6f/0x2e0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
...
</TASK>
....
---[ end trace 0000000000000000 ]---
Note that the mlx5_hwtstamp_set and mlx5e_hwtstamp_set functions shown
in the trace come from an in progress patch converting the legacy ioctl
to ndo_hwtstamp_get/set and are not present in mainline. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/vmalloc, mm/kasan: respect gfp mask in kasan_populate_vmalloc()
kasan_populate_vmalloc() and its helpers ignore the caller's gfp_mask and
always allocate memory using the hardcoded GFP_KERNEL flag. This makes
them inconsistent with vmalloc(), which was recently extended to support
GFP_NOFS and GFP_NOIO allocations.
Page table allocations performed during shadow population also ignore the
external gfp_mask. To preserve the intended semantics of GFP_NOFS and
GFP_NOIO, wrap the apply_to_page_range() calls into the appropriate
memalloc scope.
xfs calls vmalloc with GFP_NOFS, so this bug could lead to deadlock.
There was a report here
https://lkml.kernel.org/r/686ea951.050a0220.385921.0016.GAE@google.com
This patch:
- Extends kasan_populate_vmalloc() and helpers to take gfp_mask;
- Passes gfp_mask down to alloc_pages_bulk() and __get_free_page();
- Enforces GFP_NOFS/NOIO semantics with memalloc_*_save()/restore()
around apply_to_page_range();
- Updates vmalloc.c and percpu allocator call sites accordingly. |
| In the Linux kernel, the following vulnerability has been resolved:
nfs/localio: restore creds before releasing pageio data
Otherwise if the nfsd filecache code releases the nfsd_file
immediately, it can trigger the BUG_ON(cred == current->cred) in
__put_cred() when it puts the nfsd_file->nf_file->f-cred. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: transfer phy_config_inband() locking responsibility to phylink
Problem description
===================
Lockdep reports a possible circular locking dependency (AB/BA) between
&pl->state_mutex and &phy->lock, as follows.
phylink_resolve() // acquires &pl->state_mutex
-> phylink_major_config()
-> phy_config_inband() // acquires &pl->phydev->lock
whereas all the other call sites where &pl->state_mutex and
&pl->phydev->lock have the locking scheme reversed. Everywhere else,
&pl->phydev->lock is acquired at the top level, and &pl->state_mutex at
the lower level. A clear example is phylink_bringup_phy().
The outlier is the newly introduced phy_config_inband() and the existing
lock order is the correct one. To understand why it cannot be the other
way around, it is sufficient to consider phylink_phy_change(), phylink's
callback from the PHY device's phy->phy_link_change() virtual method,
invoked by the PHY state machine.
phy_link_up() and phy_link_down(), the (indirect) callers of
phylink_phy_change(), are called with &phydev->lock acquired.
Then phylink_phy_change() acquires its own &pl->state_mutex, to
serialize changes made to its pl->phy_state and pl->link_config.
So all other instances of &pl->state_mutex and &phydev->lock must be
consistent with this order.
Problem impact
==============
I think the kernel runs a serious deadlock risk if an existing
phylink_resolve() thread, which results in a phy_config_inband() call,
is concurrent with a phy_link_up() or phy_link_down() call, which will
deadlock on &pl->state_mutex in phylink_phy_change(). Practically
speaking, the impact may be limited by the slow speed of the medium
auto-negotiation protocol, which makes it unlikely for the current state
to still be unresolved when a new one is detected, but I think the
problem is there. Nonetheless, the problem was discovered using lockdep.
Proposed solution
=================
Practically speaking, the phy_config_inband() requirement of having
phydev->lock acquired must transfer to the caller (phylink is the only
caller). There, it must bubble up until immediately before
&pl->state_mutex is acquired, for the cases where that takes place.
Solution details, considerations, notes
=======================================
This is the phy_config_inband() call graph:
sfp_upstream_ops :: connect_phy()
|
v
phylink_sfp_connect_phy()
|
v
phylink_sfp_config_phy()
|
| sfp_upstream_ops :: module_insert()
| |
| v
| phylink_sfp_module_insert()
| |
| | sfp_upstream_ops :: module_start()
| | |
| | v
| | phylink_sfp_module_start()
| | |
| v v
| phylink_sfp_config_optical()
phylink_start() | |
| phylink_resume() v v
| | phylink_sfp_set_config()
| | |
v v v
phylink_mac_initial_config()
| phylink_resolve()
| | phylink_ethtool_ksettings_set()
v v v
phylink_major_config()
|
v
phy_config_inband()
phylink_major_config() caller #1, phylink_mac_initial_config(), does not
acquire &pl->state_mutex nor do its callers. It must acquire
&pl->phydev->lock prior to calling phylink_major_config().
phylink_major_config() caller #2, phylink_resolve() acquires
&pl->state_mutex, thus also needs to acquire &pl->phydev->lock.
phylink_major_config() caller #3, phylink_ethtool_ksettings_set(), is
completely uninteresting, because it only call
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix out-of-bounds dynptr write in bpf_crypto_crypt
Stanislav reported that in bpf_crypto_crypt() the destination dynptr's
size is not validated to be at least as large as the source dynptr's
size before calling into the crypto backend with 'len = src_len'. This
can result in an OOB write when the destination is smaller than the
source.
Concretely, in mentioned function, psrc and pdst are both linear
buffers fetched from each dynptr:
psrc = __bpf_dynptr_data(src, src_len);
[...]
pdst = __bpf_dynptr_data_rw(dst, dst_len);
[...]
err = decrypt ?
ctx->type->decrypt(ctx->tfm, psrc, pdst, src_len, piv) :
ctx->type->encrypt(ctx->tfm, psrc, pdst, src_len, piv);
The crypto backend expects pdst to be large enough with a src_len length
that can be written. Add an additional src_len > dst_len check and bail
out if it's the case. Note that these kfuncs are accessible under root
privileges only. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: fix linked list corruption
Never leave scheduled wcid entries on the temporary on-stack list |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: also call xfrm_state_delete_tunnel at destroy time for states that were never added
In commit b441cf3f8c4b ("xfrm: delete x->tunnel as we delete x"), I
missed the case where state creation fails between full
initialization (->init_state has been called) and being inserted on
the lists.
In this situation, ->init_state has been called, so for IPcomp
tunnels, the fallback tunnel has been created and added onto the
lists, but the user state never gets added, because we fail before
that. The user state doesn't go through __xfrm_state_delete, so we
don't call xfrm_state_delete_tunnel for those states, and we end up
leaking the FB tunnel.
There are several codepaths affected by this: the add/update paths, in
both net/key and xfrm, and the migrate code (xfrm_migrate,
xfrm_state_migrate). A "proper" rollback of the init_state work would
probably be doable in the add/update code, but for migrate it gets
more complicated as multiple states may be involved.
At some point, the new (not-inserted) state will be destroyed, so call
xfrm_state_delete_tunnel during xfrm_state_gc_destroy. Most states
will have their fallback tunnel cleaned up during __xfrm_state_delete,
which solves the issue that b441cf3f8c4b (and other patches before it)
aimed at. All states (including FB tunnels) will be removed from the
lists once xfrm_state_fini has called flush_work(&xfrm_state_gc_work). |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: delete x->tunnel as we delete x
The ipcomp fallback tunnels currently get deleted (from the various
lists and hashtables) as the last user state that needed that fallback
is destroyed (not deleted). If a reference to that user state still
exists, the fallback state will remain on the hashtables/lists,
triggering the WARN in xfrm_state_fini. Because of those remaining
references, the fix in commit f75a2804da39 ("xfrm: destroy xfrm_state
synchronously on net exit path") is not complete.
We recently fixed one such situation in TCP due to defered freeing of
skbs (commit 9b6412e6979f ("tcp: drop secpath at the same time as we
currently drop dst")). This can also happen due to IP reassembly: skbs
with a secpath remain on the reassembly queue until netns
destruction. If we can't guarantee that the queues are flushed by the
time xfrm_state_fini runs, there may still be references to a (user)
xfrm_state, preventing the timely deletion of the corresponding
fallback state.
Instead of chasing each instance of skbs holding a secpath one by one,
this patch fixes the issue directly within xfrm, by deleting the
fallback state as soon as the last user state depending on it has been
deleted. Destruction will still happen when the final reference is
dropped.
A separate lockdep class for the fallback state is required since
we're going to lock x->tunnel while x is locked. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: prevent use-after-free by freeing the cfile later
In smb2_compound_op we have a possible use-after-free
which can cause hard to debug problems later on.
This was revealed during stress testing with KASAN enabled
kernel. Fixing it by moving the cfile free call to
a few lines below, after the usage. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/dpt: Treat the DPT BO as a framebuffer
Currently i915_gem_object_is_framebuffer() doesn't treat the
BO containing the framebuffer's DPT as a framebuffer itself.
This means eg. that the shrinker can evict the DPT BO while
leaving the actual FB BO bound, when the DPT is allocated
from regular shmem.
That causes an immediate oops during hibernate as we
try to rewrite the PTEs inside the already evicted
DPT obj.
TODO: presumably this might also be the reason for the
DPT related display faults under heavy memory pressure,
but I'm still not sure how that would happen as the object
should be pinned by intel_dpt_pin() while in active use by
the display engine...
(cherry picked from commit 779cb5ba64ec7df80675a956c9022929514f517a) |
| In the Linux kernel, the following vulnerability has been resolved:
usb: phy: phy-tahvo: fix memory leak in tahvo_usb_probe()
Smatch reports:
drivers/usb/phy/phy-tahvo.c: tahvo_usb_probe()
warn: missing unwind goto?
After geting irq, if ret < 0, it will return without error handling to
free memory.
Just add error handling to fix this problem. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Use number of bits to manage bitmap sizes
To allocate bitmaps, the mpi3mr driver calculates sizes of bitmaps using
byte as unit. However, bitmap helper functions assume that bitmaps are
allocated using unsigned long as unit. This gap causes memory access beyond
the bitmap sizes and results in "BUG: KASAN: slab-out-of-bounds". The BUG
was observed at firmware download to eHBA-9600. Call trace indicated that
the out-of-bounds access happened in find_first_zero_bit() called from
mpi3mr_send_event_ack() for miroc->evtack_cmds_bitmap.
To fix the BUG, do not use bytes to manage bitmap sizes. Instead, use
number of bits, and call bitmap helper functions which take number of bits
as arguments. For memory allocation, call bitmap_zalloc() instead of
kzalloc() and krealloc(). For memory free, call bitmap_free() instead of
kfree(). For zero clear, call bitmap_clear() instead of memset().
Remove three fields for bitmap byte sizes in struct scmd_priv which are no
longer required. Replace the field dev_handle_bitmap_sz with
dev_handle_bitmap_bits to keep number of bits of removepend_bitmap across
resize. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Free error logs of tracing instances
When a tracing instance is removed, the error messages that hold errors
that occurred in the instance needs to be freed. The following reports a
memory leak:
# cd /sys/kernel/tracing
# mkdir instances/foo
# echo 'hist:keys=x' > instances/foo/events/sched/sched_switch/trigger
# cat instances/foo/error_log
[ 117.404795] hist:sched:sched_switch: error: Couldn't find field
Command: hist:keys=x
^
# rmdir instances/foo
Then check for memory leaks:
# echo scan > /sys/kernel/debug/kmemleak
# cat /sys/kernel/debug/kmemleak
unreferenced object 0xffff88810d8ec700 (size 192):
comm "bash", pid 869, jiffies 4294950577 (age 215.752s)
hex dump (first 32 bytes):
60 dd 68 61 81 88 ff ff 60 dd 68 61 81 88 ff ff `.ha....`.ha....
a0 30 8c 83 ff ff ff ff 26 00 0a 00 00 00 00 00 .0......&.......
backtrace:
[<00000000dae26536>] kmalloc_trace+0x2a/0xa0
[<00000000b2938940>] tracing_log_err+0x277/0x2e0
[<000000004a0e1b07>] parse_atom+0x966/0xb40
[<0000000023b24337>] parse_expr+0x5f3/0xdb0
[<00000000594ad074>] event_hist_trigger_parse+0x27f8/0x3560
[<00000000293a9645>] trigger_process_regex+0x135/0x1a0
[<000000005c22b4f2>] event_trigger_write+0x87/0xf0
[<000000002cadc509>] vfs_write+0x162/0x670
[<0000000059c3b9be>] ksys_write+0xca/0x170
[<00000000f1cddc00>] do_syscall_64+0x3e/0xc0
[<00000000868ac68c>] entry_SYSCALL_64_after_hwframe+0x72/0xdc
unreferenced object 0xffff888170c35a00 (size 32):
comm "bash", pid 869, jiffies 4294950577 (age 215.752s)
hex dump (first 32 bytes):
0a 20 20 43 6f 6d 6d 61 6e 64 3a 20 68 69 73 74 . Command: hist
3a 6b 65 79 73 3d 78 0a 00 00 00 00 00 00 00 00 :keys=x.........
backtrace:
[<000000006a747de5>] __kmalloc+0x4d/0x160
[<000000000039df5f>] tracing_log_err+0x29b/0x2e0
[<000000004a0e1b07>] parse_atom+0x966/0xb40
[<0000000023b24337>] parse_expr+0x5f3/0xdb0
[<00000000594ad074>] event_hist_trigger_parse+0x27f8/0x3560
[<00000000293a9645>] trigger_process_regex+0x135/0x1a0
[<000000005c22b4f2>] event_trigger_write+0x87/0xf0
[<000000002cadc509>] vfs_write+0x162/0x670
[<0000000059c3b9be>] ksys_write+0xca/0x170
[<00000000f1cddc00>] do_syscall_64+0x3e/0xc0
[<00000000868ac68c>] entry_SYSCALL_64_after_hwframe+0x72/0xdc
The problem is that the error log needs to be freed when the instance is
removed. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: fail SCO/ISO via hci_conn_failed if ACL gone early
Not calling hci_(dis)connect_cfm before deleting conn referred to by a
socket generally results to use-after-free.
When cleaning up SCO connections when the parent ACL is deleted too
early, use hci_conn_failed to do the connection cleanup properly.
We also need to clean up ISO connections in a similar situation when
connecting has started but LE Create CIS is not yet sent, so do it too
here. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: seqiv - Handle EBUSY correctly
As it is seqiv only handles the special return value of EINPROGERSS,
which means that in all other cases it will free data related to the
request.
However, as the caller of seqiv may specify MAY_BACKLOG, we also need
to expect EBUSY and treat it in the same way. Otherwise backlogged
requests will trigger a use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: fix a potential overflow in sctp_ifwdtsn_skip
Currently, when traversing ifwdtsn skips with _sctp_walk_ifwdtsn, it only
checks the pos against the end of the chunk. However, the data left for
the last pos may be < sizeof(struct sctp_ifwdtsn_skip), and dereference
it as struct sctp_ifwdtsn_skip may cause coverflow.
This patch fixes it by checking the pos against "the end of the chunk -
sizeof(struct sctp_ifwdtsn_skip)" in sctp_ifwdtsn_skip, similar to
sctp_fwdtsn_skip. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: fix memory leak in mlx5e_fs_tt_redirect_any_create
The memory pointed to by the fs->any pointer is not freed in the error
path of mlx5e_fs_tt_redirect_any_create, which can lead to a memory leak.
Fix by freeing the memory in the error path, thereby making the error path
identical to mlx5e_fs_tt_redirect_any_destroy(). |