| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| IBM Db2 11.1.0 through 11.1.4.7, 11.5.0 through 11.5.9, and 12.1.0 through 12.1.3 for Linux, UNIX and Windows (includes Db2 Connect Server) is vulnerable to a denial of service as the server may crash under certain conditions with a specially crafted query. |
| IBM Db2 10.5.0 through 10.5.11, 11.1.0 through 11.1.4.7, 11.5.0 through 11.5.9, and 12.1.0 through 12.1.3 for Linux could allow an authenticated user to regain access after account lockout due to password use after expiration date. |
| IBM Db2 10.5.0 through 10.5.11, 11.1.0 through 11.1.4.7, 11.5.0 through 11.5.9, and 12.1.0 through 12.1.3 for Linux, UNIX and Windows (includes Db2 Connect Server) could allow an authenticated user to cause a denial due to the improper release of resources after use. |
| IBM Db2 11.5.0 through 11.5.9, and 12.1.0 through 12.1.3 for Linux, UNIX and Windows (includes Db2 Connect Server) could allow an authenticated user to cause a denial of service due to improper allocation of resources. |
| IBM Db2 11.1.0 through 11.1.4.7, 11.5.0 through 11.5.9, and 12.1.0 through 12.1.3 for Linux, UNIX and Windows (includes Db2 Connect Server) clpplus command exposes user credentials to the terminal which could be obtained by a third party with physical access to the system. |
| IBM Db2 11.5.0 through 11.5.9, and 12.1.0 through 12.1.3 for Linux, UNIX and Windows (includes DB2 Connect Server) could allow a local user to cause a denial of service due to the database monitor script incorrectly detecting that the instance is still starting under specific conditions. |
| pgAdmin versions up to 9.9 are affected by a Remote Code Execution (RCE) vulnerability that occurs when running in server mode and performing restores from PLAIN-format dump files. This issue allows attackers to inject and execute arbitrary commands on the server hosting pgAdmin, posing a critical risk to the integrity and security of the database management system and underlying data. |
| Deserialization of Untrusted Data vulnerability in Apache Jackrabbit Core and Apache Jackrabbit JCR Commons.
This issue affects Apache Jackrabbit Core: from 1.0.0 through 2.22.1; Apache Jackrabbit JCR Commons: from 1.0.0 through 2.22.1.
Deployments that accept JNDI URIs for JCR lookup from untrusted users allows them to inject malicious JNDI references, potentially leading to arbitrary code execution through deserialization of untrusted data.
Users are recommended to upgrade to version 2.22.2. JCR lookup through JNDI has been disabled by default in 2.22.2. Users of this feature need to enable it explicitly and are adviced to review their use of JNDI URI for JCR lookup. |
| pgAdmin 4 versions up to 9.9 are affected by a command injection vulnerability on Windows systems. This issue is caused by the use of shell=True during backup and restore operations, enabling attackers to execute arbitrary system commands by providing specially crafted file path input. |
| MicroWorld eScan AV's update mechanism failed to ensure authenticity and integrity of updates: update packages were delivered and accepted without robust cryptographic verification. As a result, an on-path attacker could perform a man-in-the-middle (MitM) attack and substitute malicious update payloads for legitimate ones. The eScan AV client accepted these substituted packages and executed or loaded their components (including sideloaded DLLs and Java/installer payloads), enabling remote code execution on affected systems. MicroWorld eScan confirmed remediation of the update mechanism on 2023-07-31 but versioning details are unavailable. NOTE: MicroWorld eScan disputes the characterization in third-party reports, stating the issue relates to 2018–2019 and that controls were implemented then. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: fnic: Fix crash in fnic_wq_cmpl_handler when FDMI times out
When both the RHBA and RPA FDMI requests time out, fnic reuses a frame to
send ABTS for each of them. On send completion, this causes an attempt to
free the same frame twice that leads to a crash.
Fix crash by allocating separate frames for RHBA and RPA, and modify ABTS
logic accordingly.
Tested by checking MDS for FDMI information.
Tested by using instrumented driver to:
- Drop PLOGI response
- Drop RHBA response
- Drop RPA response
- Drop RHBA and RPA response
- Drop PLOGI response + ABTS response
- Drop RHBA response + ABTS response
- Drop RPA response + ABTS response
- Drop RHBA and RPA response + ABTS response for both of them |
| In the Linux kernel, the following vulnerability has been resolved:
mm/shmem, swap: fix softlockup with mTHP swapin
Following softlockup can be easily reproduced on my test machine with:
echo always > /sys/kernel/mm/transparent_hugepage/hugepages-64kB/enabled
swapon /dev/zram0 # zram0 is a 48G swap device
mkdir -p /sys/fs/cgroup/memory/test
echo 1G > /sys/fs/cgroup/test/memory.max
echo $BASHPID > /sys/fs/cgroup/test/cgroup.procs
while true; do
dd if=/dev/zero of=/tmp/test.img bs=1M count=5120
cat /tmp/test.img > /dev/null
rm /tmp/test.img
done
Then after a while:
watchdog: BUG: soft lockup - CPU#0 stuck for 763s! [cat:5787]
Modules linked in: zram virtiofs
CPU: 0 UID: 0 PID: 5787 Comm: cat Kdump: loaded Tainted: G L 6.15.0.orig-gf3021d9246bc-dirty #118 PREEMPT(voluntary)·
Tainted: [L]=SOFTLOCKUP
Hardware name: Red Hat KVM/RHEL-AV, BIOS 0.0.0 02/06/2015
RIP: 0010:mpol_shared_policy_lookup+0xd/0x70
Code: e9 b8 b4 ff ff 31 c0 c3 cc cc cc cc 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 0f 1f 00 0f 1f 44 00 00 41 54 55 53 <48> 8b 1f 48 85 db 74 41 4c 8d 67 08 48 89 fb 48 89 f5 4c 89 e7 e8
RSP: 0018:ffffc90002b1fc28 EFLAGS: 00000202
RAX: 00000000001c20ca RBX: 0000000000724e1e RCX: 0000000000000001
RDX: ffff888118e214c8 RSI: 0000000000057d42 RDI: ffff888118e21518
RBP: 000000000002bec8 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000bf4 R11: 0000000000000000 R12: 0000000000000001
R13: 00000000001c20ca R14: 00000000001c20ca R15: 0000000000000000
FS: 00007f03f995c740(0000) GS:ffff88a07ad9a000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f03f98f1000 CR3: 0000000144626004 CR4: 0000000000770eb0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
shmem_alloc_folio+0x31/0xc0
shmem_swapin_folio+0x309/0xcf0
? filemap_get_entry+0x117/0x1e0
? xas_load+0xd/0xb0
? filemap_get_entry+0x101/0x1e0
shmem_get_folio_gfp+0x2ed/0x5b0
shmem_file_read_iter+0x7f/0x2e0
vfs_read+0x252/0x330
ksys_read+0x68/0xf0
do_syscall_64+0x4c/0x1c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f03f9a46991
Code: 00 48 8b 15 81 14 10 00 f7 d8 64 89 02 b8 ff ff ff ff eb bd e8 20 ad 01 00 f3 0f 1e fa 80 3d 35 97 10 00 00 74 13 31 c0 0f 05 <48> 3d 00 f0 ff ff 77 4f c3 66 0f 1f 44 00 00 55 48 89 e5 48 83 ec
RSP: 002b:00007fff3c52bd28 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
RAX: ffffffffffffffda RBX: 0000000000040000 RCX: 00007f03f9a46991
RDX: 0000000000040000 RSI: 00007f03f98ba000 RDI: 0000000000000003
RBP: 00007fff3c52bd50 R08: 0000000000000000 R09: 00007f03f9b9a380
R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000040000
R13: 00007f03f98ba000 R14: 0000000000000003 R15: 0000000000000000
</TASK>
The reason is simple, readahead brought some order 0 folio in swap cache,
and the swapin mTHP folio being allocated is in conflict with it, so
swapcache_prepare fails and causes shmem_swap_alloc_folio to return
-EEXIST, and shmem simply retries again and again causing this loop.
Fix it by applying a similar fix for anon mTHP swapin.
The performance change is very slight, time of swapin 10g zero folios
with shmem (test for 12 times):
Before: 2.47s
After: 2.48s
[kasong@tencent.com: add comment] |
| In the Linux kernel, the following vulnerability has been resolved:
mm: userfaultfd: fix race of userfaultfd_move and swap cache
This commit fixes two kinds of races, they may have different results:
Barry reported a BUG_ON in commit c50f8e6053b0, we may see the same
BUG_ON if the filemap lookup returned NULL and folio is added to swap
cache after that.
If another kind of race is triggered (folio changed after lookup) we
may see RSS counter is corrupted:
[ 406.893936] BUG: Bad rss-counter state mm:ffff0000c5a9ddc0
type:MM_ANONPAGES val:-1
[ 406.894071] BUG: Bad rss-counter state mm:ffff0000c5a9ddc0
type:MM_SHMEMPAGES val:1
Because the folio is being accounted to the wrong VMA.
I'm not sure if there will be any data corruption though, seems no.
The issues above are critical already.
On seeing a swap entry PTE, userfaultfd_move does a lockless swap cache
lookup, and tries to move the found folio to the faulting vma. Currently,
it relies on checking the PTE value to ensure that the moved folio still
belongs to the src swap entry and that no new folio has been added to the
swap cache, which turns out to be unreliable.
While working and reviewing the swap table series with Barry, following
existing races are observed and reproduced [1]:
In the example below, move_pages_pte is moving src_pte to dst_pte, where
src_pte is a swap entry PTE holding swap entry S1, and S1 is not in the
swap cache:
CPU1 CPU2
userfaultfd_move
move_pages_pte()
entry = pte_to_swp_entry(orig_src_pte);
// Here it got entry = S1
... < interrupted> ...
<swapin src_pte, alloc and use folio A>
// folio A is a new allocated folio
// and get installed into src_pte
<frees swap entry S1>
// src_pte now points to folio A, S1
// has swap count == 0, it can be freed
// by folio_swap_swap or swap
// allocator's reclaim.
<try to swap out another folio B>
// folio B is a folio in another VMA.
<put folio B to swap cache using S1 >
// S1 is freed, folio B can use it
// for swap out with no problem.
...
folio = filemap_get_folio(S1)
// Got folio B here !!!
... < interrupted again> ...
<swapin folio B and free S1>
// Now S1 is free to be used again.
<swapout src_pte & folio A using S1>
// Now src_pte is a swap entry PTE
// holding S1 again.
folio_trylock(folio)
move_swap_pte
double_pt_lock
is_pte_pages_stable
// Check passed because src_pte == S1
folio_move_anon_rmap(...)
// Moved invalid folio B here !!!
The race window is very short and requires multiple collisions of multiple
rare events, so it's very unlikely to happen, but with a deliberately
constructed reproducer and increased time window, it can be reproduced
easily.
This can be fixed by checking if the folio returned by filemap is the
valid swap cache folio after acquiring the folio lock.
Another similar race is possible: filemap_get_folio may return NULL, but
folio (A) could be swapped in and then swapped out again using the same
swap entry after the lookup. In such a case, folio (A) may remain in the
swap cache, so it must be moved too:
CPU1 CPU2
userfaultfd_move
move_pages_pte()
entry = pte_to_swp_entry(orig_src_pte);
// Here it got entry = S1, and S1 is not in swap cache
folio = filemap_get
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix invalid inode pointer dereferences during log replay
In a few places where we call read_one_inode(), if we get a NULL pointer
we end up jumping into an error path, or fallthrough in case of
__add_inode_ref(), where we then do something like this:
iput(&inode->vfs_inode);
which results in an invalid inode pointer that triggers an invalid memory
access, resulting in a crash.
Fix this by making sure we don't do such dereferences. |
| Adobe Experience Manager versions 11.6 and earlier are affected by a stored Cross-Site Scripting (XSS) vulnerability that could be abused by a low privileged attacker to inject malicious scripts into vulnerable form fields. Malicious JavaScript may be executed in a victim’s browser when they browse to the page containing the vulnerable field. Exploitation of this issue requires user interaction in that a victim must open a malicious link. Scope is changed. |
| Adobe Experience Manager versions 11.6 and earlier are affected by a stored Cross-Site Scripting (XSS) vulnerability that could be abused by a low privileged attacker to inject malicious scripts into vulnerable form fields. Malicious JavaScript may be executed in a victim’s browser when they browse to the page containing the vulnerable field. Exploitation of this issue requires user interaction in that a victim must open a malicious link. Scope is changed. |
| Adobe Experience Manager versions 11.6 and earlier are affected by a stored Cross-Site Scripting (XSS) vulnerability that could be abused by a low privileged attacker to inject malicious scripts into vulnerable form fields. Malicious JavaScript may be executed in a victim’s browser when they browse to the page containing the vulnerable field. Exploitation of this issue requires user interaction in that a victim must open a malicious link. Scope is changed. |
| In danny-avila/librechat version 0.7.9, there is an insecure API design issue in the 2-Factor Authentication (2FA) flow. The system allows users to disable 2FA without requiring a valid OTP or backup code, bypassing the intended verification process. This vulnerability occurs because the backend does not properly validate the OTP or backup code when the API endpoint '/api/auth/2fa/disable' is directly accessed. This flaw can be exploited by authenticated users to weaken the security of their own accounts, although it does not lead to full account compromise. |
| An issue in Intermesh BV GroupOffice vulnerable before v.25.0.47 and 6.8.136 allows a remote attacker to execute arbitrary code via the dbToApi() and eval() in the FunctionField.php |
| Use after free in Microsoft Office allows an unauthorized attacker to execute code locally. |