Search

Search Results (311935 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-38591 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Reject narrower access to pointer ctx fields The following BPF program, simplified from a syzkaller repro, causes a kernel warning: r0 = *(u8 *)(r1 + 169); exit; With pointer field sk being at offset 168 in __sk_buff. This access is detected as a narrower read in bpf_skb_is_valid_access because it doesn't match offsetof(struct __sk_buff, sk). It is therefore allowed and later proceeds to bpf_convert_ctx_access. Note that for the "is_narrower_load" case in the convert_ctx_accesses(), the insn->off is aligned, so the cnt may not be 0 because it matches the offsetof(struct __sk_buff, sk) in the bpf_convert_ctx_access. However, the target_size stays 0 and the verifier errors with a kernel warning: verifier bug: error during ctx access conversion(1) This patch fixes that to return a proper "invalid bpf_context access off=X size=Y" error on the load instruction. The same issue affects multiple other fields in context structures that allow narrow access. Some other non-affected fields (for sk_msg, sk_lookup, and sockopt) were also changed to use bpf_ctx_range_ptr for consistency. Note this syzkaller crash was reported in the "Closes" link below, which used to be about a different bug, fixed in commit fce7bd8e385a ("bpf/verifier: Handle BPF_LOAD_ACQ instructions in insn_def_regno()"). Because syzbot somehow confused the two bugs, the new crash and repro didn't get reported to the mailing list.
CVE-2025-38590 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Remove skb secpath if xfrm state is not found Hardware returns a unique identifier for a decrypted packet's xfrm state, this state is looked up in an xarray. However, the state might have been freed by the time of this lookup. Currently, if the state is not found, only a counter is incremented. The secpath (sp) extension on the skb is not removed, resulting in sp->len becoming 0. Subsequently, functions like __xfrm_policy_check() attempt to access fields such as xfrm_input_state(skb)->xso.type (which dereferences sp->xvec[sp->len - 1]) without first validating sp->len. This leads to a crash when dereferencing an invalid state pointer. This patch prevents the crash by explicitly removing the secpath extension from the skb if the xfrm state is not found after hardware decryption. This ensures downstream functions do not operate on a zero-length secpath. BUG: unable to handle page fault for address: ffffffff000002c8 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 282e067 P4D 282e067 PUD 0 Oops: Oops: 0000 [#1] SMP CPU: 12 UID: 0 PID: 0 Comm: swapper/12 Not tainted 6.15.0-rc7_for_upstream_min_debug_2025_05_27_22_44 #1 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:__xfrm_policy_check+0x61a/0xa30 Code: b6 77 7f 83 e6 02 74 14 4d 8b af d8 00 00 00 41 0f b6 45 05 c1 e0 03 48 98 49 01 c5 41 8b 45 00 83 e8 01 48 98 49 8b 44 c5 10 <0f> b6 80 c8 02 00 00 83 e0 0c 3c 04 0f 84 0c 02 00 00 31 ff 80 fa RSP: 0018:ffff88885fb04918 EFLAGS: 00010297 RAX: ffffffff00000000 RBX: 0000000000000002 RCX: 0000000000000000 RDX: 0000000000000002 RSI: 0000000000000002 RDI: 0000000000000000 RBP: ffffffff8311af80 R08: 0000000000000020 R09: 00000000c2eda353 R10: ffff88812be2bbc8 R11: 000000001faab533 R12: ffff88885fb049c8 R13: ffff88812be2bbc8 R14: 0000000000000000 R15: ffff88811896ae00 FS: 0000000000000000(0000) GS:ffff8888dca82000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffff000002c8 CR3: 0000000243050002 CR4: 0000000000372eb0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <IRQ> ? try_to_wake_up+0x108/0x4c0 ? udp4_lib_lookup2+0xbe/0x150 ? udp_lib_lport_inuse+0x100/0x100 ? __udp4_lib_lookup+0x2b0/0x410 __xfrm_policy_check2.constprop.0+0x11e/0x130 udp_queue_rcv_one_skb+0x1d/0x530 udp_unicast_rcv_skb+0x76/0x90 __udp4_lib_rcv+0xa64/0xe90 ip_protocol_deliver_rcu+0x20/0x130 ip_local_deliver_finish+0x75/0xa0 ip_local_deliver+0xc1/0xd0 ? ip_protocol_deliver_rcu+0x130/0x130 ip_sublist_rcv+0x1f9/0x240 ? ip_rcv_finish_core+0x430/0x430 ip_list_rcv+0xfc/0x130 __netif_receive_skb_list_core+0x181/0x1e0 netif_receive_skb_list_internal+0x200/0x360 ? mlx5e_build_rx_skb+0x1bc/0xda0 [mlx5_core] gro_receive_skb+0xfd/0x210 mlx5e_handle_rx_cqe_mpwrq+0x141/0x280 [mlx5_core] mlx5e_poll_rx_cq+0xcc/0x8e0 [mlx5_core] ? mlx5e_handle_rx_dim+0x91/0xd0 [mlx5_core] mlx5e_napi_poll+0x114/0xab0 [mlx5_core] __napi_poll+0x25/0x170 net_rx_action+0x32d/0x3a0 ? mlx5_eq_comp_int+0x8d/0x280 [mlx5_core] ? notifier_call_chain+0x33/0xa0 handle_softirqs+0xda/0x250 irq_exit_rcu+0x6d/0xc0 common_interrupt+0x81/0xa0 </IRQ>
CVE-2025-38589 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: neighbour: Fix null-ptr-deref in neigh_flush_dev(). kernel test robot reported null-ptr-deref in neigh_flush_dev(). [0] The cited commit introduced per-netdev neighbour list and converted neigh_flush_dev() to use it instead of the global hash table. One thing we missed is that neigh_table_clear() calls neigh_ifdown() with NULL dev. Let's restore the hash table iteration. Note that IPv6 module is no longer unloadable, so neigh_table_clear() is called only when IPv6 fails to initialise, which is unlikely to happen. [0]: IPv6: Attempt to unregister permanent protocol 136 IPv6: Attempt to unregister permanent protocol 17 Oops: general protection fault, probably for non-canonical address 0xdffffc00000001a0: 0000 [#1] SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000d00-0x0000000000000d07] CPU: 1 UID: 0 PID: 1 Comm: systemd Tainted: G T 6.12.0-rc6-01246-gf7f52738637f #1 Tainted: [T]=RANDSTRUCT Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 RIP: 0010:neigh_flush_dev.llvm.6395807810224103582+0x52/0x570 Code: c1 e8 03 42 8a 04 38 84 c0 0f 85 15 05 00 00 31 c0 41 83 3e 0a 0f 94 c0 48 8d 1c c3 48 81 c3 f8 0c 00 00 48 89 d8 48 c1 e8 03 <42> 80 3c 38 00 74 08 48 89 df e8 f7 49 93 fe 4c 8b 3b 4d 85 ff 0f RSP: 0000:ffff88810026f408 EFLAGS: 00010206 RAX: 00000000000001a0 RBX: 0000000000000d00 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffffc0631640 RBP: ffff88810026f470 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: ffffffffc0625250 R14: ffffffffc0631640 R15: dffffc0000000000 FS: 00007f575cb83940(0000) GS:ffff8883aee00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f575db40008 CR3: 00000002bf936000 CR4: 00000000000406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __neigh_ifdown.llvm.6395807810224103582+0x44/0x390 neigh_table_clear+0xb1/0x268 ndisc_cleanup+0x21/0x38 [ipv6] init_module+0x2f5/0x468 [ipv6] do_one_initcall+0x1ba/0x628 do_init_module+0x21a/0x530 load_module+0x2550/0x2ea0 __se_sys_finit_module+0x3d2/0x620 __x64_sys_finit_module+0x76/0x88 x64_sys_call+0x7ff/0xde8 do_syscall_64+0xfb/0x1e8 entry_SYSCALL_64_after_hwframe+0x67/0x6f RIP: 0033:0x7f575d6f2719 Code: 08 89 e8 5b 5d c3 66 2e 0f 1f 84 00 00 00 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d b7 06 0d 00 f7 d8 64 89 01 48 RSP: 002b:00007fff82a2a268 EFLAGS: 00000246 ORIG_RAX: 0000000000000139 RAX: ffffffffffffffda RBX: 0000557827b45310 RCX: 00007f575d6f2719 RDX: 0000000000000000 RSI: 00007f575d584efd RDI: 0000000000000004 RBP: 00007f575d584efd R08: 0000000000000000 R09: 0000557827b47b00 R10: 0000000000000004 R11: 0000000000000246 R12: 0000000000020000 R13: 0000000000000000 R14: 0000557827b470e0 R15: 00007f575dbb4270 </TASK> Modules linked in: ipv6(+)
CVE-2025-38588 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: prevent infinite loop in rt6_nlmsg_size() While testing prior patch, I was able to trigger an infinite loop in rt6_nlmsg_size() in the following place: list_for_each_entry_rcu(sibling, &f6i->fib6_siblings, fib6_siblings) { rt6_nh_nlmsg_size(sibling->fib6_nh, &nexthop_len); } This is because fib6_del_route() and fib6_add_rt2node() uses list_del_rcu(), which can confuse rcu readers, because they might no longer see the head of the list. Restart the loop if f6i->fib6_nsiblings is zero.
CVE-2025-38587 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: fix possible infinite loop in fib6_info_uses_dev() fib6_info_uses_dev() seems to rely on RCU without an explicit protection. Like the prior fix in rt6_nlmsg_size(), we need to make sure fib6_del_route() or fib6_add_rt2node() have not removed the anchor from the list, or we risk an infinite loop.
CVE-2025-38586 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix fp initialization for exception boundary In the ARM64 BPF JIT when prog->aux->exception_boundary is set for a BPF program, find_used_callee_regs() is not called because for a program acting as exception boundary, all callee saved registers are saved. find_used_callee_regs() sets `ctx->fp_used = true;` when it sees FP being used in any of the instructions. For programs acting as exception boundary, ctx->fp_used remains false even if frame pointer is used by the program and therefore, FP is not set-up for such programs in the prologue. This can cause the kernel to crash due to a pagefault. Fix it by setting ctx->fp_used = true for exception boundary programs as fp is always saved in such programs.
CVE-2025-38585 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: staging: media: atomisp: Fix stack buffer overflow in gmin_get_var_int() When gmin_get_config_var() calls efi.get_variable() and the EFI variable is larger than the expected buffer size, two behaviors combine to create a stack buffer overflow: 1. gmin_get_config_var() does not return the proper error code when efi.get_variable() fails. It returns the stale 'ret' value from earlier operations instead of indicating the EFI failure. 2. When efi.get_variable() returns EFI_BUFFER_TOO_SMALL, it updates *out_len to the required buffer size but writes no data to the output buffer. However, due to bug #1, gmin_get_var_int() believes the call succeeded. The caller gmin_get_var_int() then performs: - Allocates val[CFG_VAR_NAME_MAX + 1] (65 bytes) on stack - Calls gmin_get_config_var(dev, is_gmin, var, val, &len) with len=64 - If EFI variable is >64 bytes, efi.get_variable() sets len=required_size - Due to bug #1, thinks call succeeded with len=required_size - Executes val[len] = 0, writing past end of 65-byte stack buffer This creates a stack buffer overflow when EFI variables are larger than 64 bytes. Since EFI variables can be controlled by firmware or system configuration, this could potentially be exploited for code execution. Fix the bug by returning proper error codes from gmin_get_config_var() based on EFI status instead of stale 'ret' value. The gmin_get_var_int() function is called during device initialization for camera sensor configuration on Intel Bay Trail and Cherry Trail platforms using the atomisp camera stack.
CVE-2025-38584 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: padata: Fix pd UAF once and for all There is a race condition/UAF in padata_reorder that goes back to the initial commit. A reference count is taken at the start of the process in padata_do_parallel, and released at the end in padata_serial_worker. This reference count is (and only is) required for padata_replace to function correctly. If padata_replace is never called then there is no issue. In the function padata_reorder which serves as the core of padata, as soon as padata is added to queue->serial.list, and the associated spin lock released, that padata may be processed and the reference count on pd would go away. Fix this by getting the next padata before the squeue->serial lock is released. In order to make this possible, simplify padata_reorder by only calling it once the next padata arrives.
CVE-2025-38583 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: xilinx: vcu: unregister pll_post only if registered correctly If registration of pll_post is failed, it will be set to NULL or ERR, unregistering same will fail with following call trace: Unable to handle kernel NULL pointer dereference at virtual address 008 pc : clk_hw_unregister+0xc/0x20 lr : clk_hw_unregister_fixed_factor+0x18/0x30 sp : ffff800011923850 ... Call trace: clk_hw_unregister+0xc/0x20 clk_hw_unregister_fixed_factor+0x18/0x30 xvcu_unregister_clock_provider+0xcc/0xf4 [xlnx_vcu] xvcu_probe+0x2bc/0x53c [xlnx_vcu]
CVE-2025-38582 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix double destruction of rsv_qp rsv_qp may be double destroyed in error flow, first in free_mr_init(), and then in hns_roce_exit(). Fix it by moving the free_mr_init() call into hns_roce_v2_init(). list_del corruption, ffff589732eb9b50->next is LIST_POISON1 (dead000000000100) WARNING: CPU: 8 PID: 1047115 at lib/list_debug.c:53 __list_del_entry_valid+0x148/0x240 ... Call trace: __list_del_entry_valid+0x148/0x240 hns_roce_qp_remove+0x4c/0x3f0 [hns_roce_hw_v2] hns_roce_v2_destroy_qp_common+0x1dc/0x5f4 [hns_roce_hw_v2] hns_roce_v2_destroy_qp+0x22c/0x46c [hns_roce_hw_v2] free_mr_exit+0x6c/0x120 [hns_roce_hw_v2] hns_roce_v2_exit+0x170/0x200 [hns_roce_hw_v2] hns_roce_exit+0x118/0x350 [hns_roce_hw_v2] __hns_roce_hw_v2_init_instance+0x1c8/0x304 [hns_roce_hw_v2] hns_roce_hw_v2_reset_notify_init+0x170/0x21c [hns_roce_hw_v2] hns_roce_hw_v2_reset_notify+0x6c/0x190 [hns_roce_hw_v2] hclge_notify_roce_client+0x6c/0x160 [hclge] hclge_reset_rebuild+0x150/0x5c0 [hclge] hclge_reset+0x10c/0x140 [hclge] hclge_reset_subtask+0x80/0x104 [hclge] hclge_reset_service_task+0x168/0x3ac [hclge] hclge_service_task+0x50/0x100 [hclge] process_one_work+0x250/0x9a0 worker_thread+0x324/0x990 kthread+0x190/0x210 ret_from_fork+0x10/0x18
CVE-2025-38581 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: crypto: ccp - Fix crash when rebind ccp device for ccp.ko When CONFIG_CRYPTO_DEV_CCP_DEBUGFS is enabled, rebinding the ccp device causes the following crash: $ echo '0000:0a:00.2' > /sys/bus/pci/drivers/ccp/unbind $ echo '0000:0a:00.2' > /sys/bus/pci/drivers/ccp/bind [ 204.976930] BUG: kernel NULL pointer dereference, address: 0000000000000098 [ 204.978026] #PF: supervisor write access in kernel mode [ 204.979126] #PF: error_code(0x0002) - not-present page [ 204.980226] PGD 0 P4D 0 [ 204.981317] Oops: Oops: 0002 [#1] SMP NOPTI ... [ 204.997852] Call Trace: [ 204.999074] <TASK> [ 205.000297] start_creating+0x9f/0x1c0 [ 205.001533] debugfs_create_dir+0x1f/0x170 [ 205.002769] ? srso_return_thunk+0x5/0x5f [ 205.004000] ccp5_debugfs_setup+0x87/0x170 [ccp] [ 205.005241] ccp5_init+0x8b2/0x960 [ccp] [ 205.006469] ccp_dev_init+0xd4/0x150 [ccp] [ 205.007709] sp_init+0x5f/0x80 [ccp] [ 205.008942] sp_pci_probe+0x283/0x2e0 [ccp] [ 205.010165] ? srso_return_thunk+0x5/0x5f [ 205.011376] local_pci_probe+0x4f/0xb0 [ 205.012584] pci_device_probe+0xdb/0x230 [ 205.013810] really_probe+0xed/0x380 [ 205.015024] __driver_probe_device+0x7e/0x160 [ 205.016240] device_driver_attach+0x2f/0x60 [ 205.017457] bind_store+0x7c/0xb0 [ 205.018663] drv_attr_store+0x28/0x40 [ 205.019868] sysfs_kf_write+0x5f/0x70 [ 205.021065] kernfs_fop_write_iter+0x145/0x1d0 [ 205.022267] vfs_write+0x308/0x440 [ 205.023453] ksys_write+0x6d/0xe0 [ 205.024616] __x64_sys_write+0x1e/0x30 [ 205.025778] x64_sys_call+0x16ba/0x2150 [ 205.026942] do_syscall_64+0x56/0x1e0 [ 205.028108] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 205.029276] RIP: 0033:0x7fbc36f10104 [ 205.030420] Code: 89 02 48 c7 c0 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 8d 05 e1 08 2e 00 8b 00 85 c0 75 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 f3 c3 66 90 41 54 55 49 89 d4 53 48 89 f5 This patch sets ccp_debugfs_dir to NULL after destroying it in ccp5_debugfs_destroy, allowing the directory dentry to be recreated when rebinding the ccp device. Tested on AMD Ryzen 7 1700X.
CVE-2025-38580 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix inode use after free in ext4_end_io_rsv_work() In ext4_io_end_defer_completion(), check if io_end->list_vec is empty to avoid adding an io_end that requires no conversion to the i_rsv_conversion_list, which in turn prevents starting an unnecessary worker. An ext4_emergency_state() check is also added to avoid attempting to abort the journal in an emergency state. Additionally, ext4_put_io_end_defer() is refactored to call ext4_io_end_defer_completion() directly instead of being open-coded. This also prevents starting an unnecessary worker when EXT4_IO_END_FAILED is set but data_err=abort is not enabled. This ensures that the check in ext4_put_io_end_defer() is consistent with the check in ext4_end_bio(). Otherwise, we might add an io_end to the i_rsv_conversion_list and then call ext4_finish_bio(), after which the inode could be freed before ext4_end_io_rsv_work() is called, triggering a use-after-free issue.
CVE-2025-38579 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix KMSAN uninit-value in extent_info usage KMSAN reported a use of uninitialized value in `__is_extent_mergeable()` and `__is_back_mergeable()` via the read extent tree path. The root cause is that `get_read_extent_info()` only initializes three fields (`fofs`, `blk`, `len`) of `struct extent_info`, leaving the remaining fields uninitialized. This leads to undefined behavior when those fields are accessed later, especially during extent merging. Fix it by zero-initializing the `extent_info` struct before population.
CVE-2025-38578 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid UAF in f2fs_sync_inode_meta() syzbot reported an UAF issue as below: [1] [2] [1] https://syzkaller.appspot.com/text?tag=CrashReport&x=16594c60580000 ================================================================== BUG: KASAN: use-after-free in __list_del_entry_valid+0xa6/0x130 lib/list_debug.c:62 Read of size 8 at addr ffff888100567dc8 by task kworker/u4:0/8 CPU: 1 PID: 8 Comm: kworker/u4:0 Tainted: G W 6.1.129-syzkaller-00017-g642656a36791 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025 Workqueue: writeback wb_workfn (flush-7:0) Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x151/0x1b7 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:316 [inline] print_report+0x158/0x4e0 mm/kasan/report.c:427 kasan_report+0x13c/0x170 mm/kasan/report.c:531 __asan_report_load8_noabort+0x14/0x20 mm/kasan/report_generic.c:351 __list_del_entry_valid+0xa6/0x130 lib/list_debug.c:62 __list_del_entry include/linux/list.h:134 [inline] list_del_init include/linux/list.h:206 [inline] f2fs_inode_synced+0x100/0x2e0 fs/f2fs/super.c:1553 f2fs_update_inode+0x72/0x1c40 fs/f2fs/inode.c:588 f2fs_update_inode_page+0x135/0x170 fs/f2fs/inode.c:706 f2fs_write_inode+0x416/0x790 fs/f2fs/inode.c:734 write_inode fs/fs-writeback.c:1460 [inline] __writeback_single_inode+0x4cf/0xb80 fs/fs-writeback.c:1677 writeback_sb_inodes+0xb32/0x1910 fs/fs-writeback.c:1903 __writeback_inodes_wb+0x118/0x3f0 fs/fs-writeback.c:1974 wb_writeback+0x3da/0xa00 fs/fs-writeback.c:2081 wb_check_background_flush fs/fs-writeback.c:2151 [inline] wb_do_writeback fs/fs-writeback.c:2239 [inline] wb_workfn+0xbba/0x1030 fs/fs-writeback.c:2266 process_one_work+0x73d/0xcb0 kernel/workqueue.c:2299 worker_thread+0xa60/0x1260 kernel/workqueue.c:2446 kthread+0x26d/0x300 kernel/kthread.c:386 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 </TASK> Allocated by task 298: kasan_save_stack mm/kasan/common.c:45 [inline] kasan_set_track+0x4b/0x70 mm/kasan/common.c:52 kasan_save_alloc_info+0x1f/0x30 mm/kasan/generic.c:505 __kasan_slab_alloc+0x6c/0x80 mm/kasan/common.c:333 kasan_slab_alloc include/linux/kasan.h:202 [inline] slab_post_alloc_hook+0x53/0x2c0 mm/slab.h:768 slab_alloc_node mm/slub.c:3421 [inline] slab_alloc mm/slub.c:3431 [inline] __kmem_cache_alloc_lru mm/slub.c:3438 [inline] kmem_cache_alloc_lru+0x102/0x270 mm/slub.c:3454 alloc_inode_sb include/linux/fs.h:3255 [inline] f2fs_alloc_inode+0x2d/0x350 fs/f2fs/super.c:1437 alloc_inode fs/inode.c:261 [inline] iget_locked+0x18c/0x7e0 fs/inode.c:1373 f2fs_iget+0x55/0x4ca0 fs/f2fs/inode.c:486 f2fs_lookup+0x3c1/0xb50 fs/f2fs/namei.c:484 __lookup_slow+0x2b9/0x3e0 fs/namei.c:1689 lookup_slow+0x5a/0x80 fs/namei.c:1706 walk_component+0x2e7/0x410 fs/namei.c:1997 lookup_last fs/namei.c:2454 [inline] path_lookupat+0x16d/0x450 fs/namei.c:2478 filename_lookup+0x251/0x600 fs/namei.c:2507 vfs_statx+0x107/0x4b0 fs/stat.c:229 vfs_fstatat fs/stat.c:267 [inline] vfs_lstat include/linux/fs.h:3434 [inline] __do_sys_newlstat fs/stat.c:423 [inline] __se_sys_newlstat+0xda/0x7c0 fs/stat.c:417 __x64_sys_newlstat+0x5b/0x70 fs/stat.c:417 x64_sys_call+0x52/0x9a0 arch/x86/include/generated/asm/syscalls_64.h:7 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x3b/0x80 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x68/0xd2 Freed by task 0: kasan_save_stack mm/kasan/common.c:45 [inline] kasan_set_track+0x4b/0x70 mm/kasan/common.c:52 kasan_save_free_info+0x2b/0x40 mm/kasan/generic.c:516 ____kasan_slab_free+0x131/0x180 mm/kasan/common.c:241 __kasan_slab_free+0x11/0x20 mm/kasan/common.c:249 kasan_slab_free include/linux/kasan.h:178 [inline] slab_free_hook mm/slub.c:1745 [inline] slab_free_freelist_hook mm/slub.c:1771 [inline] slab_free mm/slub.c:3686 [inline] kmem_cache_free+0x ---truncated---
CVE-2025-38577 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid panic in f2fs_evict_inode As syzbot [1] reported as below: R10: 0000000000000100 R11: 0000000000000206 R12: 00007ffe17473450 R13: 00007f28b1c10854 R14: 000000000000dae5 R15: 00007ffe17474520 </TASK> ---[ end trace 0000000000000000 ]--- ================================================================== BUG: KASAN: use-after-free in __list_del_entry_valid+0xa6/0x130 lib/list_debug.c:62 Read of size 8 at addr ffff88812d962278 by task syz-executor/564 CPU: 1 PID: 564 Comm: syz-executor Tainted: G W 6.1.129-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025 Call Trace: <TASK> __dump_stack+0x21/0x24 lib/dump_stack.c:88 dump_stack_lvl+0xee/0x158 lib/dump_stack.c:106 print_address_description+0x71/0x210 mm/kasan/report.c:316 print_report+0x4a/0x60 mm/kasan/report.c:427 kasan_report+0x122/0x150 mm/kasan/report.c:531 __asan_report_load8_noabort+0x14/0x20 mm/kasan/report_generic.c:351 __list_del_entry_valid+0xa6/0x130 lib/list_debug.c:62 __list_del_entry include/linux/list.h:134 [inline] list_del_init include/linux/list.h:206 [inline] f2fs_inode_synced+0xf7/0x2e0 fs/f2fs/super.c:1531 f2fs_update_inode+0x74/0x1c40 fs/f2fs/inode.c:585 f2fs_update_inode_page+0x137/0x170 fs/f2fs/inode.c:703 f2fs_write_inode+0x4ec/0x770 fs/f2fs/inode.c:731 write_inode fs/fs-writeback.c:1460 [inline] __writeback_single_inode+0x4a0/0xab0 fs/fs-writeback.c:1677 writeback_single_inode+0x221/0x8b0 fs/fs-writeback.c:1733 sync_inode_metadata+0xb6/0x110 fs/fs-writeback.c:2789 f2fs_sync_inode_meta+0x16d/0x2a0 fs/f2fs/checkpoint.c:1159 block_operations fs/f2fs/checkpoint.c:1269 [inline] f2fs_write_checkpoint+0xca3/0x2100 fs/f2fs/checkpoint.c:1658 kill_f2fs_super+0x231/0x390 fs/f2fs/super.c:4668 deactivate_locked_super+0x98/0x100 fs/super.c:332 deactivate_super+0xaf/0xe0 fs/super.c:363 cleanup_mnt+0x45f/0x4e0 fs/namespace.c:1186 __cleanup_mnt+0x19/0x20 fs/namespace.c:1193 task_work_run+0x1c6/0x230 kernel/task_work.c:203 exit_task_work include/linux/task_work.h:39 [inline] do_exit+0x9fb/0x2410 kernel/exit.c:871 do_group_exit+0x210/0x2d0 kernel/exit.c:1021 __do_sys_exit_group kernel/exit.c:1032 [inline] __se_sys_exit_group kernel/exit.c:1030 [inline] __x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1030 x64_sys_call+0x7b4/0x9a0 arch/x86/include/generated/asm/syscalls_64.h:232 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x4c/0xa0 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x68/0xd2 RIP: 0033:0x7f28b1b8e169 Code: Unable to access opcode bytes at 0x7f28b1b8e13f. RSP: 002b:00007ffe174710a8 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7 RAX: ffffffffffffffda RBX: 00007f28b1c10879 RCX: 00007f28b1b8e169 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000001 RBP: 0000000000000002 R08: 00007ffe1746ee47 R09: 00007ffe17472360 R10: 0000000000000009 R11: 0000000000000246 R12: 00007ffe17472360 R13: 00007f28b1c10854 R14: 000000000000dae5 R15: 00007ffe17474520 </TASK> Allocated by task 569: kasan_save_stack mm/kasan/common.c:45 [inline] kasan_set_track+0x4b/0x70 mm/kasan/common.c:52 kasan_save_alloc_info+0x25/0x30 mm/kasan/generic.c:505 __kasan_slab_alloc+0x72/0x80 mm/kasan/common.c:328 kasan_slab_alloc include/linux/kasan.h:201 [inline] slab_post_alloc_hook+0x4f/0x2c0 mm/slab.h:737 slab_alloc_node mm/slub.c:3398 [inline] slab_alloc mm/slub.c:3406 [inline] __kmem_cache_alloc_lru mm/slub.c:3413 [inline] kmem_cache_alloc_lru+0x104/0x220 mm/slub.c:3429 alloc_inode_sb include/linux/fs.h:3245 [inline] f2fs_alloc_inode+0x2d/0x340 fs/f2fs/super.c:1419 alloc_inode fs/inode.c:261 [inline] iget_locked+0x186/0x880 fs/inode.c:1373 f2fs_iget+0x55/0x4c60 fs/f2fs/inode.c:483 f2fs_lookup+0x366/0xab0 fs/f2fs/namei.c:487 __lookup_slow+0x2a3/0x3d0 fs/namei.c:1690 lookup_slow+0x57/0x70 fs/namei.c:1707 walk_component+0x2e6/0x410 fs/namei ---truncated---
CVE-2025-38576 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/eeh: Make EEH driver device hotplug safe Multiple race conditions existed between the PCIe hotplug driver and the EEH driver, leading to a variety of kernel oopses of the same general nature: <pcie device unplug> <eeh driver trigger> <hotplug removal trigger> <pcie tree reconfiguration> <eeh recovery next step> <oops in EEH driver bus iteration loop> A second class of oops is also seen when the underlying bus disappears during device recovery. Refactor the EEH module to be PCI rescan and remove safe. Also clean up a few minor formatting / readability issues.
CVE-2025-38574 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: pptp: ensure minimal skb length in pptp_xmit() Commit aabc6596ffb3 ("net: ppp: Add bound checking for skb data on ppp_sync_txmung") fixed ppp_sync_txmunge() We need a similar fix in pptp_xmit(), otherwise we might read uninit data as reported by syzbot. BUG: KMSAN: uninit-value in pptp_xmit+0xc34/0x2720 drivers/net/ppp/pptp.c:193 pptp_xmit+0xc34/0x2720 drivers/net/ppp/pptp.c:193 ppp_channel_bridge_input drivers/net/ppp/ppp_generic.c:2290 [inline] ppp_input+0x1d6/0xe60 drivers/net/ppp/ppp_generic.c:2314 pppoe_rcv_core+0x1e8/0x760 drivers/net/ppp/pppoe.c:379 sk_backlog_rcv+0x142/0x420 include/net/sock.h:1148 __release_sock+0x1d3/0x330 net/core/sock.c:3213 release_sock+0x6b/0x270 net/core/sock.c:3767 pppoe_sendmsg+0x15d/0xcb0 drivers/net/ppp/pppoe.c:904 sock_sendmsg_nosec net/socket.c:712 [inline] __sock_sendmsg+0x330/0x3d0 net/socket.c:727 ____sys_sendmsg+0x893/0xd80 net/socket.c:2566 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2620 __sys_sendmmsg+0x2d9/0x7c0 net/socket.c:2709
CVE-2025-38573 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: spi: cs42l43: Property entry should be a null-terminated array The software node does not specify a count of property entries, so the array must be null-terminated. When unterminated, this can lead to a fault in the downstream cs35l56 amplifier driver, because the node parse walks off the end of the array into unknown memory.
CVE-2025-38572 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: reject malicious packets in ipv6_gso_segment() syzbot was able to craft a packet with very long IPv6 extension headers leading to an overflow of skb->transport_header. This 16bit field has a limited range. Add skb_reset_transport_header_careful() helper and use it from ipv6_gso_segment() WARNING: CPU: 0 PID: 5871 at ./include/linux/skbuff.h:3032 skb_reset_transport_header include/linux/skbuff.h:3032 [inline] WARNING: CPU: 0 PID: 5871 at ./include/linux/skbuff.h:3032 ipv6_gso_segment+0x15e2/0x21e0 net/ipv6/ip6_offload.c:151 Modules linked in: CPU: 0 UID: 0 PID: 5871 Comm: syz-executor211 Not tainted 6.16.0-rc6-syzkaller-g7abc678e3084 #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025 RIP: 0010:skb_reset_transport_header include/linux/skbuff.h:3032 [inline] RIP: 0010:ipv6_gso_segment+0x15e2/0x21e0 net/ipv6/ip6_offload.c:151 Call Trace: <TASK> skb_mac_gso_segment+0x31c/0x640 net/core/gso.c:53 nsh_gso_segment+0x54a/0xe10 net/nsh/nsh.c:110 skb_mac_gso_segment+0x31c/0x640 net/core/gso.c:53 __skb_gso_segment+0x342/0x510 net/core/gso.c:124 skb_gso_segment include/net/gso.h:83 [inline] validate_xmit_skb+0x857/0x11b0 net/core/dev.c:3950 validate_xmit_skb_list+0x84/0x120 net/core/dev.c:4000 sch_direct_xmit+0xd3/0x4b0 net/sched/sch_generic.c:329 __dev_xmit_skb net/core/dev.c:4102 [inline] __dev_queue_xmit+0x17b6/0x3a70 net/core/dev.c:4679
CVE-2025-38571 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sunrpc: fix client side handling of tls alerts A security exploit was discovered in NFS over TLS in tls_alert_recv due to its assumption that there is valid data in the msghdr's iterator's kvec. Instead, this patch proposes the rework how control messages are setup and used by sock_recvmsg(). If no control message structure is setup, kTLS layer will read and process TLS data record types. As soon as it encounters a TLS control message, it would return an error. At that point, NFS can setup a kvec backed control buffer and read in the control message such as a TLS alert. Scott found that a msg iterator can advance the kvec pointer as a part of the copy process thus we need to revert the iterator before calling into the tls_alert_recv.