Search

Search Results (313409 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50538 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vme: Fix error not catched in fake_init() In fake_init(), __root_device_register() is possible to fail but it's ignored, which can cause unregistering vme_root fail when exit. general protection fault, probably for non-canonical address 0xdffffc000000008c KASAN: null-ptr-deref in range [0x0000000000000460-0x0000000000000467] RIP: 0010:root_device_unregister+0x26/0x60 Call Trace: <TASK> __x64_sys_delete_module+0x34f/0x540 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd Return error when __root_device_register() fails.
CVE-2022-50539 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARM: OMAP2+: omap4-common: Fix refcount leak bug In omap4_sram_init(), of_find_compatible_node() will return a node pointer with refcount incremented. We should use of_node_put() when it is not used anymore.
CVE-2022-50540 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dmaengine: qcom-adm: fix wrong sizeof config in slave_config Fix broken slave_config function that uncorrectly compare the peripheral_size with the size of the config pointer instead of the size of the config struct. This cause the crci value to be ignored and cause a kernel panic on any slave that use adm driver. To fix this, compare to the size of the struct and NOT the size of the pointer.
CVE-2022-50541 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: k3-udma: Reset UDMA_CHAN_RT byte counters to prevent overflow UDMA_CHAN_RT_*BCNT_REG stores the real-time channel bytecount statistics. These registers are 32-bit hardware counters and the driver uses these counters to monitor the operational progress status for a channel, when transferring more than 4GB of data it was observed that these counters overflow and completion calculation of a operation gets affected and the transfer hangs indefinitely. This commit adds changes to decrease the byte count for every complete transaction so that these registers never overflow and the proper byte count statistics is maintained for ongoing transaction by the RT counters. Earlier uc->bcnt used to maintain a count of the completed bytes at driver side, since the RT counters maintain the statistics of current transaction now, the maintenance of uc->bcnt is not necessary.
CVE-2022-50542 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: media: si470x: Fix use-after-free in si470x_int_in_callback() syzbot reported use-after-free in si470x_int_in_callback() [1]. This indicates that urb->context, which contains struct si470x_device object, is freed when si470x_int_in_callback() is called. The cause of this issue is that si470x_int_in_callback() is called for freed urb. si470x_usb_driver_probe() calls si470x_start_usb(), which then calls usb_submit_urb() and si470x_start(). If si470x_start_usb() fails, si470x_usb_driver_probe() doesn't kill urb, but it just frees struct si470x_device object, as depicted below: si470x_usb_driver_probe() ... si470x_start_usb() ... usb_submit_urb() retval = si470x_start() return retval if (retval < 0) free struct si470x_device object, but don't kill urb This patch fixes this issue by killing urb when si470x_start_usb() fails and urb is submitted. If si470x_start_usb() fails and urb is not submitted, i.e. submitting usb fails, it just frees struct si470x_device object.
CVE-2022-50543 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix mr->map double free rxe_mr_cleanup() which tries to free mr->map again will be called when rxe_mr_init_user() fails: CPU: 0 PID: 4917 Comm: rdma_flush_serv Kdump: loaded Not tainted 6.1.0-rc1-roce-flush+ #25 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x45/0x5d panic+0x19e/0x349 end_report.part.0+0x54/0x7c kasan_report.cold+0xa/0xf rxe_mr_cleanup+0x9d/0xf0 [rdma_rxe] __rxe_cleanup+0x10a/0x1e0 [rdma_rxe] rxe_reg_user_mr+0xb7/0xd0 [rdma_rxe] ib_uverbs_reg_mr+0x26a/0x480 [ib_uverbs] ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x1a2/0x250 [ib_uverbs] ib_uverbs_cmd_verbs+0x1397/0x15a0 [ib_uverbs] This issue was firstly exposed since commit b18c7da63fcb ("RDMA/rxe: Fix memory leak in error path code") and then we fixed it in commit 8ff5f5d9d8cf ("RDMA/rxe: Prevent double freeing rxe_map_set()") but this fix was reverted together at last by commit 1e75550648da (Revert "RDMA/rxe: Create duplicate mapping tables for FMRs") Simply let rxe_mr_cleanup() always handle freeing the mr->map once it is successfully allocated.
CVE-2022-50544 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: host: xhci: Fix potential memory leak in xhci_alloc_stream_info() xhci_alloc_stream_info() allocates stream context array for stream_info ->stream_ctx_array with xhci_alloc_stream_ctx(). When some error occurs, stream_info->stream_ctx_array is not released, which will lead to a memory leak. We can fix it by releasing the stream_info->stream_ctx_array with xhci_free_stream_ctx() on the error path to avoid the potential memory leak.
CVE-2022-50545 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: r6040: Fix kmemleak in probe and remove There is a memory leaks reported by kmemleak: unreferenced object 0xffff888116111000 (size 2048): comm "modprobe", pid 817, jiffies 4294759745 (age 76.502s) hex dump (first 32 bytes): 00 c4 0a 04 81 88 ff ff 08 10 11 16 81 88 ff ff ................ 08 10 11 16 81 88 ff ff 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff815bcd82>] kmalloc_trace+0x22/0x60 [<ffffffff827e20ee>] phy_device_create+0x4e/0x90 [<ffffffff827e6072>] get_phy_device+0xd2/0x220 [<ffffffff827e7844>] mdiobus_scan+0xa4/0x2e0 [<ffffffff827e8be2>] __mdiobus_register+0x482/0x8b0 [<ffffffffa01f5d24>] r6040_init_one+0x714/0xd2c [r6040] ... The problem occurs in probe process as follows: r6040_init_one: mdiobus_register mdiobus_scan <- alloc and register phy_device, the reference count of phy_device is 3 r6040_mii_probe phy_connect <- connect to the first phy_device, so the reference count of the first phy_device is 4, others are 3 register_netdev <- fault inject succeeded, goto error handling path // error handling path err_out_mdio_unregister: mdiobus_unregister(lp->mii_bus); err_out_mdio: mdiobus_free(lp->mii_bus); <- the reference count of the first phy_device is 1, it is not released and other phy_devices are released // similarly, the remove process also has the same problem The root cause is traced to the phy_device is not disconnected when removes one r6040 device in r6040_remove_one() or on error handling path after r6040_mii probed successfully. In r6040_mii_probe(), a net ethernet device is connected to the first PHY device of mii_bus, in order to notify the connected driver when the link status changes, which is the default behavior of the PHY infrastructure to handle everything. Therefore the phy_device should be disconnected when removes one r6040 device or on error handling path. Fix it by adding phy_disconnect() when removes one r6040 device or on error handling path after r6040_mii probed successfully.
CVE-2022-50546 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix uninititialized value in 'ext4_evict_inode' Syzbot found the following issue: ===================================================== BUG: KMSAN: uninit-value in ext4_evict_inode+0xdd/0x26b0 fs/ext4/inode.c:180 ext4_evict_inode+0xdd/0x26b0 fs/ext4/inode.c:180 evict+0x365/0x9a0 fs/inode.c:664 iput_final fs/inode.c:1747 [inline] iput+0x985/0xdd0 fs/inode.c:1773 __ext4_new_inode+0xe54/0x7ec0 fs/ext4/ialloc.c:1361 ext4_mknod+0x376/0x840 fs/ext4/namei.c:2844 vfs_mknod+0x79d/0x830 fs/namei.c:3914 do_mknodat+0x47d/0xaa0 __do_sys_mknodat fs/namei.c:3992 [inline] __se_sys_mknodat fs/namei.c:3989 [inline] __ia32_sys_mknodat+0xeb/0x150 fs/namei.c:3989 do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline] __do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178 do_fast_syscall_32+0x33/0x70 arch/x86/entry/common.c:203 do_SYSENTER_32+0x1b/0x20 arch/x86/entry/common.c:246 entry_SYSENTER_compat_after_hwframe+0x70/0x82 Uninit was created at: __alloc_pages+0x9f1/0xe80 mm/page_alloc.c:5578 alloc_pages+0xaae/0xd80 mm/mempolicy.c:2285 alloc_slab_page mm/slub.c:1794 [inline] allocate_slab+0x1b5/0x1010 mm/slub.c:1939 new_slab mm/slub.c:1992 [inline] ___slab_alloc+0x10c3/0x2d60 mm/slub.c:3180 __slab_alloc mm/slub.c:3279 [inline] slab_alloc_node mm/slub.c:3364 [inline] slab_alloc mm/slub.c:3406 [inline] __kmem_cache_alloc_lru mm/slub.c:3413 [inline] kmem_cache_alloc_lru+0x6f3/0xb30 mm/slub.c:3429 alloc_inode_sb include/linux/fs.h:3117 [inline] ext4_alloc_inode+0x5f/0x860 fs/ext4/super.c:1321 alloc_inode+0x83/0x440 fs/inode.c:259 new_inode_pseudo fs/inode.c:1018 [inline] new_inode+0x3b/0x430 fs/inode.c:1046 __ext4_new_inode+0x2a7/0x7ec0 fs/ext4/ialloc.c:959 ext4_mkdir+0x4d5/0x1560 fs/ext4/namei.c:2992 vfs_mkdir+0x62a/0x870 fs/namei.c:4035 do_mkdirat+0x466/0x7b0 fs/namei.c:4060 __do_sys_mkdirat fs/namei.c:4075 [inline] __se_sys_mkdirat fs/namei.c:4073 [inline] __ia32_sys_mkdirat+0xc4/0x120 fs/namei.c:4073 do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline] __do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178 do_fast_syscall_32+0x33/0x70 arch/x86/entry/common.c:203 do_SYSENTER_32+0x1b/0x20 arch/x86/entry/common.c:246 entry_SYSENTER_compat_after_hwframe+0x70/0x82 CPU: 1 PID: 4625 Comm: syz-executor.2 Not tainted 6.1.0-rc4-syzkaller-62821-gcb231e2f67ec #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 ===================================================== Now, 'ext4_alloc_inode()' didn't init 'ei->i_flags'. If new inode failed before set 'ei->i_flags' in '__ext4_new_inode()', then do 'iput()'. As after 6bc0d63dad7f commit will access 'ei->i_flags' in 'ext4_evict_inode()' which will lead to access uninit-value. To solve above issue just init 'ei->i_flags' in 'ext4_alloc_inode()'.
CVE-2022-50547 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: solo6x10: fix possible memory leak in solo_sysfs_init() If device_register() returns error in solo_sysfs_init(), the name allocated by dev_set_name() need be freed. As comment of device_register() says, it should use put_device() to give up the reference in the error path. So fix this by calling put_device(), then the name can be freed in kobject_cleanup().
CVE-2022-50550 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: blk-iolatency: Fix memory leak on add_disk() failures When a gendisk is successfully initialized but add_disk() fails such as when a loop device has invalid number of minor device numbers specified, blkcg_init_disk() is called during init and then blkcg_exit_disk() during error handling. Unfortunately, iolatency gets initialized in the former but doesn't get cleaned up in the latter. This is because, in non-error cases, the cleanup is performed by del_gendisk() calling rq_qos_exit(), the assumption being that rq_qos policies, iolatency being one of them, can only be activated once the disk is fully registered and visible. That assumption is true for wbt and iocost, but not so for iolatency as it gets initialized before add_disk() is called. It is desirable to lazy-init rq_qos policies because they are optional features and add to hot path overhead once initialized - each IO has to walk all the registered rq_qos policies. So, we want to switch iolatency to lazy init too. However, that's a bigger change. As a fix for the immediate problem, let's just add an extra call to rq_qos_exit() in blkcg_exit_disk(). This is safe because duplicate calls to rq_qos_exit() become noop's.
CVE-2022-50552 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: blk-mq: use quiesced elevator switch when reinitializing queues The hctx's run_work may be racing with the elevator switch when reinitializing hardware queues. The queue is merely frozen in this context, but that only prevents requests from allocating and doesn't stop the hctx work from running. The work may get an elevator pointer that's being torn down, and can result in use-after-free errors and kernel panics (example below). Use the quiesced elevator switch instead, and make the previous one static since it is now only used locally. nvme nvme0: resetting controller nvme nvme0: 32/0/0 default/read/poll queues BUG: kernel NULL pointer dereference, address: 0000000000000008 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 80000020c8861067 P4D 80000020c8861067 PUD 250f8c8067 PMD 0 Oops: 0000 [#1] SMP PTI Workqueue: kblockd blk_mq_run_work_fn RIP: 0010:kyber_has_work+0x29/0x70 ... Call Trace: __blk_mq_do_dispatch_sched+0x83/0x2b0 __blk_mq_sched_dispatch_requests+0x12e/0x170 blk_mq_sched_dispatch_requests+0x30/0x60 __blk_mq_run_hw_queue+0x2b/0x50 process_one_work+0x1ef/0x380 worker_thread+0x2d/0x3e0
CVE-2022-50555 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tipc: fix a null-ptr-deref in tipc_topsrv_accept syzbot found a crash in tipc_topsrv_accept: KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] Workqueue: tipc_rcv tipc_topsrv_accept RIP: 0010:kernel_accept+0x22d/0x350 net/socket.c:3487 Call Trace: <TASK> tipc_topsrv_accept+0x197/0x280 net/tipc/topsrv.c:460 process_one_work+0x991/0x1610 kernel/workqueue.c:2289 worker_thread+0x665/0x1080 kernel/workqueue.c:2436 kthread+0x2e4/0x3a0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306 It was caused by srv->listener that might be set to null by tipc_topsrv_stop() in net .exit whereas it's still used in tipc_topsrv_accept() worker. srv->listener is protected by srv->idr_lock in tipc_topsrv_stop(), so add a check for srv->listener under srv->idr_lock in tipc_topsrv_accept() to avoid the null-ptr-deref. To ensure the lsock is not released during the tipc_topsrv_accept(), move sock_release() after tipc_topsrv_work_stop() where it's waiting until the tipc_topsrv_accept worker to be done. Note that sk_callback_lock is used to protect sk->sk_user_data instead of srv->listener, and it should check srv in tipc_topsrv_listener_data_ready() instead. This also ensures that no more tipc_topsrv_accept worker will be started after tipc_conn_close() is called in tipc_topsrv_stop() where it sets sk->sk_user_data to null.
CVE-2023-49886 1 Ibm 1 Transformation Extender Advanced 2025-10-08 9.8 Critical
IBM Standards Processing Engine 10.0.1.10 could allow a remote attacker to execute arbitrary code on the system, caused by an unsafe java deserialization. By sending specially crafted input, an attacker could exploit this vulnerability to execute arbitrary code on the system.
CVE-2023-53618 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: reject invalid reloc tree root keys with stack dump [BUG] Syzbot reported a crash that an ASSERT() got triggered inside prepare_to_merge(). That ASSERT() makes sure the reloc tree is properly pointed back by its subvolume tree. [CAUSE] After more debugging output, it turns out we had an invalid reloc tree: BTRFS error (device loop1): reloc tree mismatch, root 8 has no reloc root, expect reloc root key (-8, 132, 8) gen 17 Note the above root key is (TREE_RELOC_OBJECTID, ROOT_ITEM, QUOTA_TREE_OBJECTID), meaning it's a reloc tree for quota tree. But reloc trees can only exist for subvolumes, as for non-subvolume trees, we just COW the involved tree block, no need to create a reloc tree since those tree blocks won't be shared with other trees. Only subvolumes tree can share tree blocks with other trees (thus they have BTRFS_ROOT_SHAREABLE flag). Thus this new debug output proves my previous assumption that corrupted on-disk data can trigger that ASSERT(). [FIX] Besides the dedicated fix and the graceful exit, also let tree-checker to check such root keys, to make sure reloc trees can only exist for subvolumes.
CVE-2023-53621 1 Linux 1 Linux Kernel 2025-10-08 N/A
In the Linux kernel, the following vulnerability has been resolved: memcontrol: ensure memcg acquired by id is properly set up In the eviction recency check, we attempt to retrieve the memcg to which the folio belonged when it was evicted, by the memcg id stored in the shadow entry. However, there is a chance that the retrieved memcg is not the original memcg that has been killed, but a new one which happens to have the same id. This is a somewhat unfortunate, but acceptable and rare inaccuracy in the heuristics. However, if we retrieve this new memcg between its allocation and when it is properly attached to the memcg hierarchy, we could run into the following NULL pointer exception during the memcg hierarchy traversal done in mem_cgroup_get_nr_swap_pages(): [ 155757.793456] BUG: kernel NULL pointer dereference, address: 00000000000000c0 [ 155757.807568] #PF: supervisor read access in kernel mode [ 155757.818024] #PF: error_code(0x0000) - not-present page [ 155757.828482] PGD 401f77067 P4D 401f77067 PUD 401f76067 PMD 0 [ 155757.839985] Oops: 0000 [#1] SMP [ 155757.887870] RIP: 0010:mem_cgroup_get_nr_swap_pages+0x3d/0xb0 [ 155757.899377] Code: 29 19 4a 02 48 39 f9 74 63 48 8b 97 c0 00 00 00 48 8b b7 58 02 00 00 48 2b b7 c0 01 00 00 48 39 f0 48 0f 4d c6 48 39 d1 74 42 <48> 8b b2 c0 00 00 00 48 8b ba 58 02 00 00 48 2b ba c0 01 00 00 48 [ 155757.937125] RSP: 0018:ffffc9002ecdfbc8 EFLAGS: 00010286 [ 155757.947755] RAX: 00000000003a3b1c RBX: 000007ffffffffff RCX: ffff888280183000 [ 155757.962202] RDX: 0000000000000000 RSI: 0007ffffffffffff RDI: ffff888bbc2d1000 [ 155757.976648] RBP: 0000000000000001 R08: 000000000000000b R09: ffff888ad9cedba0 [ 155757.991094] R10: ffffea0039c07900 R11: 0000000000000010 R12: ffff888b23a7b000 [ 155758.005540] R13: 0000000000000000 R14: ffff888bbc2d1000 R15: 000007ffffc71354 [ 155758.019991] FS: 00007f6234c68640(0000) GS:ffff88903f9c0000(0000) knlGS:0000000000000000 [ 155758.036356] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 155758.048023] CR2: 00000000000000c0 CR3: 0000000a83eb8004 CR4: 00000000007706e0 [ 155758.062473] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 155758.076924] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 155758.091376] PKRU: 55555554 [ 155758.096957] Call Trace: [ 155758.102016] <TASK> [ 155758.106502] ? __die+0x78/0xc0 [ 155758.112793] ? page_fault_oops+0x286/0x380 [ 155758.121175] ? exc_page_fault+0x5d/0x110 [ 155758.129209] ? asm_exc_page_fault+0x22/0x30 [ 155758.137763] ? mem_cgroup_get_nr_swap_pages+0x3d/0xb0 [ 155758.148060] workingset_test_recent+0xda/0x1b0 [ 155758.157133] workingset_refault+0xca/0x1e0 [ 155758.165508] filemap_add_folio+0x4d/0x70 [ 155758.173538] page_cache_ra_unbounded+0xed/0x190 [ 155758.182919] page_cache_sync_ra+0xd6/0x1e0 [ 155758.191738] filemap_read+0x68d/0xdf0 [ 155758.199495] ? mlx5e_napi_poll+0x123/0x940 [ 155758.207981] ? __napi_schedule+0x55/0x90 [ 155758.216095] __x64_sys_pread64+0x1d6/0x2c0 [ 155758.224601] do_syscall_64+0x3d/0x80 [ 155758.232058] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 155758.242473] RIP: 0033:0x7f62c29153b5 [ 155758.249938] Code: e8 48 89 75 f0 89 7d f8 48 89 4d e0 e8 b4 e6 f7 ff 41 89 c0 4c 8b 55 e0 48 8b 55 e8 48 8b 75 f0 8b 7d f8 b8 11 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 33 44 89 c7 48 89 45 f8 e8 e7 e6 f7 ff 48 8b [ 155758.288005] RSP: 002b:00007f6234c5ffd0 EFLAGS: 00000293 ORIG_RAX: 0000000000000011 [ 155758.303474] RAX: ffffffffffffffda RBX: 00007f628c4e70c0 RCX: 00007f62c29153b5 [ 155758.318075] RDX: 000000000003c041 RSI: 00007f61d2986000 RDI: 0000000000000076 [ 155758.332678] RBP: 00007f6234c5fff0 R08: 0000000000000000 R09: 0000000064d5230c [ 155758.347452] R10: 000000000027d450 R11: 0000000000000293 R12: 000000000003c041 [ 155758.362044] R13: 00007f61d2986000 R14: 00007f629e11b060 R15: 000000000027d450 [ 155758.376661] </TASK> This patch fixes the issue by moving the memcg's id publication from the alloc stage to ---truncated---
CVE-2023-53622 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix possible data races in gfs2_show_options() Some fields such as gt_logd_secs of the struct gfs2_tune are accessed without holding the lock gt_spin in gfs2_show_options(): val = sdp->sd_tune.gt_logd_secs; if (val != 30) seq_printf(s, ",commit=%d", val); And thus can cause data races when gfs2_show_options() and other functions such as gfs2_reconfigure() are concurrently executed: spin_lock(&gt->gt_spin); gt->gt_logd_secs = newargs->ar_commit; To fix these possible data races, the lock sdp->sd_tune.gt_spin is acquired before accessing the fields of gfs2_tune and released after these accesses. Further changes by Andreas: - Don't hold the spin lock over the seq_printf operations.
CVE-2023-53625 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/i915/gvt: fix vgpu debugfs clean in remove Check carefully on root debugfs available when destroying vgpu, e.g in remove case drm minor's debugfs root might already be destroyed, which led to kernel oops like below. Console: switching to colour dummy device 80x25 i915 0000:00:02.0: MDEV: Unregistering intel_vgpu_mdev b1338b2d-a709-4c23-b766-cc436c36cdf0: Removing from iommu group 14 BUG: kernel NULL pointer dereference, address: 0000000000000150 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP CPU: 3 PID: 1046 Comm: driverctl Not tainted 6.1.0-rc2+ #6 Hardware name: HP HP ProDesk 600 G3 MT/829D, BIOS P02 Ver. 02.44 09/13/2022 RIP: 0010:__lock_acquire+0x5e2/0x1f90 Code: 87 ad 09 00 00 39 05 e1 1e cc 02 0f 82 f1 09 00 00 ba 01 00 00 00 48 83 c4 48 89 d0 5b 5d 41 5c 41 5d 41 5e 41 5f c3 45 31 ff <48> 81 3f 60 9e c2 b6 45 0f 45 f8 83 fe 01 0f 87 55 fa ff ff 89 f0 RSP: 0018:ffff9f770274f948 EFLAGS: 00010046 RAX: 0000000000000003 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000150 RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000 R10: ffff8895d1173300 R11: 0000000000000001 R12: 0000000000000000 R13: 0000000000000150 R14: 0000000000000000 R15: 0000000000000000 FS: 00007fc9b2ba0740(0000) GS:ffff889cdfcc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000150 CR3: 000000010fd93005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> lock_acquire+0xbf/0x2b0 ? simple_recursive_removal+0xa5/0x2b0 ? lock_release+0x13d/0x2d0 down_write+0x2a/0xd0 ? simple_recursive_removal+0xa5/0x2b0 simple_recursive_removal+0xa5/0x2b0 ? start_creating.part.0+0x110/0x110 ? _raw_spin_unlock+0x29/0x40 debugfs_remove+0x40/0x60 intel_gvt_debugfs_remove_vgpu+0x15/0x30 [kvmgt] intel_gvt_destroy_vgpu+0x60/0x100 [kvmgt] intel_vgpu_release_dev+0xe/0x20 [kvmgt] device_release+0x30/0x80 kobject_put+0x79/0x1b0 device_release_driver_internal+0x1b8/0x230 bus_remove_device+0xec/0x160 device_del+0x189/0x400 ? up_write+0x9c/0x1b0 ? mdev_device_remove_common+0x60/0x60 [mdev] mdev_device_remove_common+0x22/0x60 [mdev] mdev_device_remove_cb+0x17/0x20 [mdev] device_for_each_child+0x56/0x80 mdev_unregister_parent+0x5a/0x81 [mdev] intel_gvt_clean_device+0x2d/0xe0 [kvmgt] intel_gvt_driver_remove+0x2e/0xb0 [i915] i915_driver_remove+0xac/0x100 [i915] i915_pci_remove+0x1a/0x30 [i915] pci_device_remove+0x31/0xa0 device_release_driver_internal+0x1b8/0x230 unbind_store+0xd8/0x100 kernfs_fop_write_iter+0x156/0x210 vfs_write+0x236/0x4a0 ksys_write+0x61/0xd0 do_syscall_64+0x55/0x80 ? find_held_lock+0x2b/0x80 ? lock_release+0x13d/0x2d0 ? up_read+0x17/0x20 ? lock_is_held_type+0xe3/0x140 ? asm_exc_page_fault+0x22/0x30 ? lockdep_hardirqs_on+0x7d/0x100 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7fc9b2c9e0c4 Code: 15 71 7d 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 80 3d 3d 05 0e 00 00 74 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 c3 0f 1f 00 48 83 ec 28 48 89 54 24 18 48 RSP: 002b:00007ffec29c81c8 EFLAGS: 00000202 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007fc9b2c9e0c4 RDX: 000000000000000d RSI: 0000559f8b5f48a0 RDI: 0000000000000001 RBP: 0000559f8b5f48a0 R08: 0000559f8b5f3540 R09: 00007fc9b2d76d30 R10: 0000000000000000 R11: 0000000000000202 R12: 000000000000000d R13: 00007fc9b2d77780 R14: 000000000000000d R15: 00007fc9b2d72a00 </TASK> Modules linked in: sunrpc intel_rapl_msr intel_rapl_common intel_pmc_core_pltdrv intel_pmc_core intel_tcc_cooling x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel ee1004 igbvf rapl vfat fat intel_cstate intel_uncore pktcdvd i2c_i801 pcspkr wmi_bmof i2c_smbus acpi_pad vfio_pci vfio_pci_core vfio_virqfd zram fuse dm ---truncated---
CVE-2023-53628 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: drop gfx_v11_0_cp_ecc_error_irq_funcs The gfx.cp_ecc_error_irq is retired in gfx11. In gfx_v11_0_hw_fini still use amdgpu_irq_put to disable this interrupt, which caused the call trace in this function. [ 102.873958] Call Trace: [ 102.873959] <TASK> [ 102.873961] gfx_v11_0_hw_fini+0x23/0x1e0 [amdgpu] [ 102.874019] gfx_v11_0_suspend+0xe/0x20 [amdgpu] [ 102.874072] amdgpu_device_ip_suspend_phase2+0x240/0x460 [amdgpu] [ 102.874122] amdgpu_device_ip_suspend+0x3d/0x80 [amdgpu] [ 102.874172] amdgpu_device_pre_asic_reset+0xd9/0x490 [amdgpu] [ 102.874223] amdgpu_device_gpu_recover.cold+0x548/0xce6 [amdgpu] [ 102.874321] amdgpu_debugfs_reset_work+0x4c/0x70 [amdgpu] [ 102.874375] process_one_work+0x21f/0x3f0 [ 102.874377] worker_thread+0x200/0x3e0 [ 102.874378] ? process_one_work+0x3f0/0x3f0 [ 102.874379] kthread+0xfd/0x130 [ 102.874380] ? kthread_complete_and_exit+0x20/0x20 [ 102.874381] ret_from_fork+0x22/0x30 v2: - Handle umc and gfx ras cases in separated patch - Retired the gfx_v11_0_cp_ecc_error_irq_funcs in gfx11 v3: - Improve the subject and code comments - Add judgment on gfx11 in the function of amdgpu_gfx_ras_late_init v4: - Drop the define of CP_ME1_PIPE_INST_ADDR_INTERVAL and SET_ECC_ME_PIPE_STATE which using in gfx_v11_0_set_cp_ecc_error_state - Check cp_ecc_error_irq.funcs rather than ip version for a more sustainable life v5: - Simplify judgment conditions
CVE-2023-53631 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: platform/x86: dell-sysman: Fix reference leak If a duplicate attribute is found using kset_find_obj(), a reference to that attribute is returned. This means that we need to dispose it accordingly. Use kobject_put() to dispose the duplicate attribute in such a case. Compile-tested only.