| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| D-Link DIR_823G 1.0.2B05 was discovered to contain a command injection vulnerability via the HostName parameter in the SetWanSettings function. This vulnerability allows attackers to execute arbitrary OS commands via a crafted request. |
| In Total.js 4 before 0e5ace7, /api/common/ping can achieve remote command execution via shell metacharacters in the host parameter. |
| drivers/usb/mon/mon_bin.c in usbmon in the Linux kernel before 5.19.15 and 6.x before 6.0.1 allows a user-space client to corrupt the monitor's internal memory. |
| Nginx NJS v0.7.4 was discovered to contain a segmentation violation in njs_promise_reaction_job. NOTE: the vendor disputes the significance of this report because NJS does not operate on untrusted input. |
| D-Link DIR-816 A2 1.10 B05 was discovered to contain a stack overflow via the pskValue parameter in the setRepeaterSecurity function. |
| D-Link DIR-816 A2 1.10 B05 was discovered to contain a stack overflow via the wizardstep54_pskpwd parameter at /goform/form2WizardStep54. |
| D-Link DIR-816 A2 1.10 B05 was discovered to contain a stack overflow via the pskValue parameter in the setSecurity function. |
| D-Link DIR-816 A2 1.10 B05 was discovered to contain a stack overflow via the wizardstep4_pskpwd parameter at /goform/form2WizardStep4. |
| D-Link DIR-816 A2 1.10 B05 was discovered to contain multiple command injection vulnerabilities via the admuser and admpass parameters at /goform/setSysAdm. |
| D-Link DIR-816 A2 1.10 B05 was discovered to contain a stack overflow via the srcip parameter at /goform/form2IPQoSTcAdd. |
| Multiple command injection vulnerabilities in GL.iNet GoodCloud IoT Device Management System Version 1.00.220412.00 via the ping and traceroute tools allow attackers to read arbitrary files on the system. |
| A vulnerability in fab_seg.c.h libraries of all Brocade Fabric OS versions before Brocade Fabric OS v9.1.1, v9.0.1e, v8.2.3c, v8.2.0_cbn5, 7.4.2j could allow local authenticated attackers to exploit stack-based buffer overflows and execute arbitrary code as the root user account. |
| A vulnerability in Brocade Fabric OS CLI before Brocade Fabric OS v9.1.0, 9.0.1e, 8.2.3c, 8.2.0cbn5, 7.4.2.j could allow a remote authenticated attacker to perform stack buffer overflow using in “firmwaredownload” and “diagshow” commands. |
| documentconverter in OX App Suite through 7.10.6, in a non-default configuration with ghostscript, allows OS Command Injection because file conversion may occur for an EPS document that is disguised as a PDF document. |
| Finit provides fast init for Linux systems. Finit's urandom plugin has a heap buffer overwrite vulnerability at boot which leads to it overwriting other parts of the heap, possibly causing random instabilities and undefined behavior. The urandom plugin is enabled by default, so this bug affects everyone using Finit 4.2 or later that do not explicitly disable the plugin at build time. This bug is fixed in Finit 4.12. Those who cannot upgrade or backport the fix to urandom.c are strongly recommended to disable the plugin in the call to the `configure` script. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: entry: avoid kprobe recursion
The cortex_a76_erratum_1463225_debug_handler() function is called when
handling debug exceptions (and synchronous exceptions from BRK
instructions), and so is called when a probed function executes. If the
compiler does not inline cortex_a76_erratum_1463225_debug_handler(), it
can be probed.
If cortex_a76_erratum_1463225_debug_handler() is probed, any debug
exception or software breakpoint exception will result in recursive
exceptions leading to a stack overflow. This can be triggered with the
ftrace multiple_probes selftest, and as per the example splat below.
This is a regression caused by commit:
6459b8469753e9fe ("arm64: entry: consolidate Cortex-A76 erratum 1463225 workaround")
... which removed the NOKPROBE_SYMBOL() annotation associated with the
function.
My intent was that cortex_a76_erratum_1463225_debug_handler() would be
inlined into its caller, el1_dbg(), which is marked noinstr and cannot
be probed. Mark cortex_a76_erratum_1463225_debug_handler() as
__always_inline to ensure this.
Example splat prior to this patch (with recursive entries elided):
| # echo p cortex_a76_erratum_1463225_debug_handler > /sys/kernel/debug/tracing/kprobe_events
| # echo p do_el0_svc >> /sys/kernel/debug/tracing/kprobe_events
| # echo 1 > /sys/kernel/debug/tracing/events/kprobes/enable
| Insufficient stack space to handle exception!
| ESR: 0x0000000096000047 -- DABT (current EL)
| FAR: 0xffff800009cefff0
| Task stack: [0xffff800009cf0000..0xffff800009cf4000]
| IRQ stack: [0xffff800008000000..0xffff800008004000]
| Overflow stack: [0xffff00007fbc00f0..0xffff00007fbc10f0]
| CPU: 0 PID: 145 Comm: sh Not tainted 6.0.0 #2
| Hardware name: linux,dummy-virt (DT)
| pstate: 604003c5 (nZCv DAIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : arm64_enter_el1_dbg+0x4/0x20
| lr : el1_dbg+0x24/0x5c
| sp : ffff800009cf0000
| x29: ffff800009cf0000 x28: ffff000002c74740 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: 00000000604003c5 x22: ffff80000801745c x21: 0000aaaac95ac068
| x20: 00000000f2000004 x19: ffff800009cf0040 x18: 0000000000000000
| x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
| x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
| x11: 0000000000000010 x10: ffff800008c87190 x9 : ffff800008ca00d0
| x8 : 000000000000003c x7 : 0000000000000000 x6 : 0000000000000000
| x5 : 0000000000000000 x4 : 0000000000000000 x3 : 00000000000043a4
| x2 : 00000000f2000004 x1 : 00000000f2000004 x0 : ffff800009cf0040
| Kernel panic - not syncing: kernel stack overflow
| CPU: 0 PID: 145 Comm: sh Not tainted 6.0.0 #2
| Hardware name: linux,dummy-virt (DT)
| Call trace:
| dump_backtrace+0xe4/0x104
| show_stack+0x18/0x4c
| dump_stack_lvl+0x64/0x7c
| dump_stack+0x18/0x38
| panic+0x14c/0x338
| test_taint+0x0/0x2c
| panic_bad_stack+0x104/0x118
| handle_bad_stack+0x34/0x48
| __bad_stack+0x78/0x7c
| arm64_enter_el1_dbg+0x4/0x20
| el1h_64_sync_handler+0x40/0x98
| el1h_64_sync+0x64/0x68
| cortex_a76_erratum_1463225_debug_handler+0x0/0x34
...
| el1h_64_sync_handler+0x40/0x98
| el1h_64_sync+0x64/0x68
| cortex_a76_erratum_1463225_debug_handler+0x0/0x34
...
| el1h_64_sync_handler+0x40/0x98
| el1h_64_sync+0x64/0x68
| cortex_a76_erratum_1463225_debug_handler+0x0/0x34
| el1h_64_sync_handler+0x40/0x98
| el1h_64_sync+0x64/0x68
| do_el0_svc+0x0/0x28
| el0t_64_sync_handler+0x84/0xf0
| el0t_64_sync+0x18c/0x190
| Kernel Offset: disabled
| CPU features: 0x0080,00005021,19001080
| Memory Limit: none
| ---[ end Kernel panic - not syncing: kernel stack overflow ]---
With this patch, cortex_a76_erratum_1463225_debug_handler() is inlined
into el1_dbg(), and el1_dbg() cannot be probed:
| # echo p cortex_a76_erratum_1463225_debug_handler > /sys/kernel/debug/tracing/kprobe_events
| sh: write error: No such file or directory
| # grep -w cortex_a76_errat
---truncated--- |
| An issue was discovered in QEMU 7.1.0 through 8.2.1. register_vfs in hw/pci/pcie_sriov.c does not set NumVFs to PCI_SRIOV_TOTAL_VF, and thus interaction with hw/nvme/ctrl.c is mishandled. |
| An issue was discovered in QEMU 7.1.0 through 8.2.1. register_vfs in hw/pci/pcie_sriov.c mishandles the situation where a guest writes NumVFs greater than TotalVFs, leading to a buffer overflow in VF implementations. |
| Buffer Overflow vulnerability in Bento4 Bento v.1.6.0-641 allows a remote attacker to execute arbitrary code via the AP4 BitReader::ReadCache() at Ap4Utils.cpp component. |
|
Dell Unity, versions prior to 5.4, contains an OS Command Injection Vulnerability in its svc_tcpdump utility. An authenticated attacker could potentially exploit this vulnerability, leading to the execution of arbitrary OS commands with elevated privileges.
|