Search

Search Results (311935 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-38570 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: eth: fbnic: unlink NAPIs from queues on error to open CI hit a UaF in fbnic in the AF_XDP portion of the queues.py test. The UaF is in the __sk_mark_napi_id_once() call in xsk_bind(), NAPI has been freed. Looks like the device failed to open earlier, and we lack clearing the NAPI pointer from the queue.
CVE-2025-38569 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: benet: fix BUG when creating VFs benet crashes as soon as SRIOV VFs are created: kernel BUG at mm/vmalloc.c:3457! Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI CPU: 4 UID: 0 PID: 7408 Comm: test.sh Kdump: loaded Not tainted 6.16.0+ #1 PREEMPT(voluntary) [...] RIP: 0010:vunmap+0x5f/0x70 [...] Call Trace: <TASK> __iommu_dma_free+0xe8/0x1c0 be_cmd_set_mac_list+0x3fe/0x640 [be2net] be_cmd_set_mac+0xaf/0x110 [be2net] be_vf_eth_addr_config+0x19f/0x330 [be2net] be_vf_setup+0x4f7/0x990 [be2net] be_pci_sriov_configure+0x3a1/0x470 [be2net] sriov_numvfs_store+0x20b/0x380 kernfs_fop_write_iter+0x354/0x530 vfs_write+0x9b9/0xf60 ksys_write+0xf3/0x1d0 do_syscall_64+0x8c/0x3d0 be_cmd_set_mac_list() calls dma_free_coherent() under a spin_lock_bh. Fix it by freeing only after the lock has been released.
CVE-2025-38568 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/sched: mqprio: fix stack out-of-bounds write in tc entry parsing TCA_MQPRIO_TC_ENTRY_INDEX is validated using NLA_POLICY_MAX(NLA_U32, TC_QOPT_MAX_QUEUE), which allows the value TC_QOPT_MAX_QUEUE (16). This leads to a 4-byte out-of-bounds stack write in the fp[] array, which only has room for 16 elements (0–15). Fix this by changing the policy to allow only up to TC_QOPT_MAX_QUEUE - 1.
CVE-2025-38567 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfsd: avoid ref leak in nfsd_open_local_fh() If two calls to nfsd_open_local_fh() race and both successfully call nfsd_file_acquire_local(), they will both get an extra reference to the net to accompany the file reference stored in *pnf. One of them will fail to store (using xchg()) the file reference in *pnf and will drop that reference but WON'T drop the accompanying reference to the net. This leak means that when the nfs server is shut down it will hang in nfsd_shutdown_net() waiting for &nn->nfsd_net_free_done. This patch adds the missing nfsd_net_put().
CVE-2025-38566 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: sunrpc: fix handling of server side tls alerts Scott Mayhew discovered a security exploit in NFS over TLS in tls_alert_recv() due to its assumption it can read data from the msg iterator's kvec.. kTLS implementation splits TLS non-data record payload between the control message buffer (which includes the type such as TLS aler or TLS cipher change) and the rest of the payload (say TLS alert's level/description) which goes into the msg payload buffer. This patch proposes to rework how control messages are setup and used by sock_recvmsg(). If no control message structure is setup, kTLS layer will read and process TLS data record types. As soon as it encounters a TLS control message, it would return an error. At that point, NFS can setup a kvec backed msg buffer and read in the control message such as a TLS alert. Msg iterator can advance the kvec pointer as a part of the copy process thus we need to revert the iterator before calling into the tls_alert_recv.
CVE-2025-38565 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/core: Exit early on perf_mmap() fail When perf_mmap() fails to allocate a buffer, it still invokes the event_mapped() callback of the related event. On X86 this might increase the perf_rdpmc_allowed reference counter. But nothing undoes this as perf_mmap_close() is never called in this case, which causes another reference count leak. Return early on failure to prevent that.
CVE-2025-38564 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/core: Handle buffer mapping fail correctly in perf_mmap() After successful allocation of a buffer or a successful attachment to an existing buffer perf_mmap() tries to map the buffer read only into the page table. If that fails, the already set up page table entries are zapped, but the other perf specific side effects of that failure are not handled. The calling code just cleans up the VMA and does not invoke perf_mmap_close(). This leaks reference counts, corrupts user->vm accounting and also results in an unbalanced invocation of event::event_mapped(). Cure this by moving the event::event_mapped() invocation before the map_range() call so that on map_range() failure perf_mmap_close() can be invoked without causing an unbalanced event::event_unmapped() call. perf_mmap_close() undoes the reference counts and eventually frees buffers.
CVE-2025-38563 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/core: Prevent VMA split of buffer mappings The perf mmap code is careful about mmap()'ing the user page with the ringbuffer and additionally the auxiliary buffer, when the event supports it. Once the first mapping is established, subsequent mapping have to use the same offset and the same size in both cases. The reference counting for the ringbuffer and the auxiliary buffer depends on this being correct. Though perf does not prevent that a related mapping is split via mmap(2), munmap(2) or mremap(2). A split of a VMA results in perf_mmap_open() calls, which take reference counts, but then the subsequent perf_mmap_close() calls are not longer fulfilling the offset and size checks. This leads to reference count leaks. As perf already has the requirement for subsequent mappings to match the initial mapping, the obvious consequence is that VMA splits, caused by resizing of a mapping or partial unmapping, have to be prevented. Implement the vm_operations_struct::may_split() callback and return unconditionally -EINVAL. That ensures that the mapping offsets and sizes cannot be changed after the fact. Remapping to a different fixed address with the same size is still possible as it takes the references for the new mapping and drops those of the old mapping.
CVE-2025-38562 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix null pointer dereference error in generate_encryptionkey If client send two session setups with krb5 authenticate to ksmbd, null pointer dereference error in generate_encryptionkey could happen. sess->Preauth_HashValue is set to NULL if session is valid. So this patch skip generate encryption key if session is valid.
CVE-2025-38561 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix Preauh_HashValue race condition If client send multiple session setup requests to ksmbd, Preauh_HashValue race condition could happen. There is no need to free sess->Preauh_HashValue at session setup phase. It can be freed together with session at connection termination phase.
CVE-2025-38560 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/sev: Evict cache lines during SNP memory validation An SNP cache coherency vulnerability requires a cache line eviction mitigation when validating memory after a page state change to private. The specific mitigation is to touch the first and last byte of each 4K page that is being validated. There is no need to perform the mitigation when performing a page state change to shared and rescinding validation. CPUID bit Fn8000001F_EBX[31] defines the COHERENCY_SFW_NO CPUID bit that, when set, indicates that the software mitigation for this vulnerability is not needed. Implement the mitigation and invoke it when validating memory (making it private) and the COHERENCY_SFW_NO bit is not set, indicating the SNP guest is vulnerable.
CVE-2025-38559 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: platform/x86/intel/pmt: fix a crashlog NULL pointer access Usage of the intel_pmt_read() for binary sysfs, requires a pcidev. The current use of the endpoint value is only valid for telemetry endpoint usage. Without the ep, the crashlog usage causes the following NULL pointer exception: BUG: kernel NULL pointer dereference, address: 0000000000000000 Oops: Oops: 0000 [#1] SMP NOPTI RIP: 0010:intel_pmt_read+0x3b/0x70 [pmt_class] Code: Call Trace: <TASK> ? sysfs_kf_bin_read+0xc0/0xe0 kernfs_fop_read_iter+0xac/0x1a0 vfs_read+0x26d/0x350 ksys_read+0x6b/0xe0 __x64_sys_read+0x1d/0x30 x64_sys_call+0x1bc8/0x1d70 do_syscall_64+0x6d/0x110 Augment struct intel_pmt_entry with a pointer to the pcidev to avoid the NULL pointer exception.
CVE-2025-38558 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: uvc: Initialize frame-based format color matching descriptor Fix NULL pointer crash in uvcg_framebased_make due to uninitialized color matching descriptor for frame-based format which was added in commit f5e7bdd34aca ("usb: gadget: uvc: Allow creating new color matching descriptors") that added handling for uncompressed and mjpeg format. Crash is seen when userspace configuration (via configfs) does not explicitly define the color matching descriptor. If color_matching is not found, config_group_find_item() returns NULL. The code then jumps to out_put_cm, where it calls config_item_put(color_matching);. If color_matching is NULL, this will dereference a null pointer, leading to a crash. [ 2.746440] Unable to handle kernel NULL pointer dereference at virtual address 000000000000008c [ 2.756273] Mem abort info: [ 2.760080] ESR = 0x0000000096000005 [ 2.764872] EC = 0x25: DABT (current EL), IL = 32 bits [ 2.771068] SET = 0, FnV = 0 [ 2.771069] EA = 0, S1PTW = 0 [ 2.771070] FSC = 0x05: level 1 translation fault [ 2.771071] Data abort info: [ 2.771072] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 [ 2.771073] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 2.771074] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 2.771075] user pgtable: 4k pages, 39-bit VAs, pgdp=00000000a3e59000 [ 2.771077] [000000000000008c] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000 [ 2.771081] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP [ 2.771084] Dumping ftrace buffer: [ 2.771085] (ftrace buffer empty) [ 2.771138] CPU: 7 PID: 486 Comm: ln Tainted: G W E 6.6.58-android15 [ 2.771139] Hardware name: Qualcomm Technologies, Inc. SunP QRD HDK (DT) [ 2.771140] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) [ 2.771141] pc : __uvcg_fill_strm+0x198/0x2cc [ 2.771145] lr : __uvcg_iter_strm_cls+0xc8/0x17c [ 2.771146] sp : ffffffc08140bbb0 [ 2.771146] x29: ffffffc08140bbb0 x28: ffffff803bc81380 x27: ffffff8023bbd250 [ 2.771147] x26: ffffff8023bbd250 x25: ffffff803c361348 x24: ffffff803d8e6768 [ 2.771148] x23: 0000000000000004 x22: 0000000000000003 x21: ffffffc08140bc48 [ 2.771149] x20: 0000000000000000 x19: ffffffc08140bc48 x18: ffffffe9f8cf4a00 [ 2.771150] x17: 000000001bf64ec3 x16: 000000001bf64ec3 x15: ffffff8023bbd250 [ 2.771151] x14: 000000000000000f x13: 004c4b40000f4240 x12: 000a2c2a00051615 [ 2.771152] x11: 000000000000004f x10: ffffffe9f76b40ec x9 : ffffffe9f7e389d0 [ 2.771153] x8 : ffffff803d0d31ce x7 : 000f4240000a2c2a x6 : 0005161500028b0a [ 2.771154] x5 : ffffff803d0d31ce x4 : 0000000000000003 x3 : 0000000000000000 [ 2.771155] x2 : ffffffc08140bc50 x1 : ffffffc08140bc48 x0 : 0000000000000000 [ 2.771156] Call trace: [ 2.771157] __uvcg_fill_strm+0x198/0x2cc [ 2.771157] __uvcg_iter_strm_cls+0xc8/0x17c [ 2.771158] uvcg_streaming_class_allow_link+0x240/0x290 [ 2.771159] configfs_symlink+0x1f8/0x630 [ 2.771161] vfs_symlink+0x114/0x1a0 [ 2.771163] do_symlinkat+0x94/0x28c [ 2.771164] __arm64_sys_symlinkat+0x54/0x70 [ 2.771164] invoke_syscall+0x58/0x114 [ 2.771166] el0_svc_common+0x80/0xe0 [ 2.771168] do_el0_svc+0x1c/0x28 [ 2.771169] el0_svc+0x3c/0x70 [ 2.771172] el0t_64_sync_handler+0x68/0xbc [ 2.771173] el0t_64_sync+0x1a8/0x1ac Initialize color matching descriptor for frame-based format to prevent NULL pointer crash by mirroring the handling done for uncompressed and mjpeg formats.
CVE-2025-38557 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: HID: apple: validate feature-report field count to prevent NULL pointer dereference A malicious HID device with quirk APPLE_MAGIC_BACKLIGHT can trigger a NULL pointer dereference whilst the power feature-report is toggled and sent to the device in apple_magic_backlight_report_set(). The power feature-report is expected to have two data fields, but if the descriptor declares one field then accessing field[1] and dereferencing it in apple_magic_backlight_report_set() becomes invalid since field[1] will be NULL. An example of a minimal descriptor which can cause the crash is something like the following where the report with ID 3 (power report) only references a single 1-byte field. When hid core parses the descriptor it will encounter the final feature tag, allocate a hid_report (all members of field[] will be zeroed out), create field structure and populate it, increasing the maxfield to 1. The subsequent field[1] access and dereference causes the crash. Usage Page (Vendor Defined 0xFF00) Usage (0x0F) Collection (Application) Report ID (1) Usage (0x01) Logical Minimum (0) Logical Maximum (255) Report Size (8) Report Count (1) Feature (Data,Var,Abs) Usage (0x02) Logical Maximum (32767) Report Size (16) Report Count (1) Feature (Data,Var,Abs) Report ID (3) Usage (0x03) Logical Minimum (0) Logical Maximum (1) Report Size (8) Report Count (1) Feature (Data,Var,Abs) End Collection Here we see the KASAN splat when the kernel dereferences the NULL pointer and crashes: [ 15.164723] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000006: 0000 [#1] SMP KASAN NOPTI [ 15.165691] KASAN: null-ptr-deref in range [0x0000000000000030-0x0000000000000037] [ 15.165691] CPU: 0 UID: 0 PID: 10 Comm: kworker/0:1 Not tainted 6.15.0 #31 PREEMPT(voluntary) [ 15.165691] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 [ 15.165691] RIP: 0010:apple_magic_backlight_report_set+0xbf/0x210 [ 15.165691] Call Trace: [ 15.165691] <TASK> [ 15.165691] apple_probe+0x571/0xa20 [ 15.165691] hid_device_probe+0x2e2/0x6f0 [ 15.165691] really_probe+0x1ca/0x5c0 [ 15.165691] __driver_probe_device+0x24f/0x310 [ 15.165691] driver_probe_device+0x4a/0xd0 [ 15.165691] __device_attach_driver+0x169/0x220 [ 15.165691] bus_for_each_drv+0x118/0x1b0 [ 15.165691] __device_attach+0x1d5/0x380 [ 15.165691] device_initial_probe+0x12/0x20 [ 15.165691] bus_probe_device+0x13d/0x180 [ 15.165691] device_add+0xd87/0x1510 [...] To fix this issue we should validate the number of fields that the backlight and power reports have and if they do not have the required number of fields then bail.
CVE-2025-38556 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: HID: core: Harden s32ton() against conversion to 0 bits Testing by the syzbot fuzzer showed that the HID core gets a shift-out-of-bounds exception when it tries to convert a 32-bit quantity to a 0-bit quantity. Ideally this should never occur, but there are buggy devices and some might have a report field with size set to zero; we shouldn't reject the report or the device just because of that. Instead, harden the s32ton() routine so that it returns a reasonable result instead of crashing when it is called with the number of bits set to 0 -- the same as what snto32() does.
CVE-2025-38555 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: usb: gadget : fix use-after-free in composite_dev_cleanup() 1. In func configfs_composite_bind() -> composite_os_desc_req_prepare(): if kmalloc fails, the pointer cdev->os_desc_req will be freed but not set to NULL. Then it will return a failure to the upper-level function. 2. in func configfs_composite_bind() -> composite_dev_cleanup(): it will checks whether cdev->os_desc_req is NULL. If it is not NULL, it will attempt to use it.This will lead to a use-after-free issue. BUG: KASAN: use-after-free in composite_dev_cleanup+0xf4/0x2c0 Read of size 8 at addr 0000004827837a00 by task init/1 CPU: 10 PID: 1 Comm: init Tainted: G O 5.10.97-oh #1 kasan_report+0x188/0x1cc __asan_load8+0xb4/0xbc composite_dev_cleanup+0xf4/0x2c0 configfs_composite_bind+0x210/0x7ac udc_bind_to_driver+0xb4/0x1ec usb_gadget_probe_driver+0xec/0x21c gadget_dev_desc_UDC_store+0x264/0x27c
CVE-2025-38554 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm: fix a UAF when vma->mm is freed after vma->vm_refcnt got dropped By inducing delays in the right places, Jann Horn created a reproducer for a hard to hit UAF issue that became possible after VMAs were allowed to be recycled by adding SLAB_TYPESAFE_BY_RCU to their cache. Race description is borrowed from Jann's discovery report: lock_vma_under_rcu() looks up a VMA locklessly with mas_walk() under rcu_read_lock(). At that point, the VMA may be concurrently freed, and it can be recycled by another process. vma_start_read() then increments the vma->vm_refcnt (if it is in an acceptable range), and if this succeeds, vma_start_read() can return a recycled VMA. In this scenario where the VMA has been recycled, lock_vma_under_rcu() will then detect the mismatching ->vm_mm pointer and drop the VMA through vma_end_read(), which calls vma_refcount_put(). vma_refcount_put() drops the refcount and then calls rcuwait_wake_up() using a copy of vma->vm_mm. This is wrong: It implicitly assumes that the caller is keeping the VMA's mm alive, but in this scenario the caller has no relation to the VMA's mm, so the rcuwait_wake_up() can cause UAF. The diagram depicting the race: T1 T2 T3 == == == lock_vma_under_rcu mas_walk <VMA gets removed from mm> mmap <the same VMA is reallocated> vma_start_read __refcount_inc_not_zero_limited_acquire munmap __vma_enter_locked refcount_add_not_zero vma_end_read vma_refcount_put __refcount_dec_and_test rcuwait_wait_event <finish operation> rcuwait_wake_up [UAF] Note that rcuwait_wait_event() in T3 does not block because refcount was already dropped by T1. At this point T3 can exit and free the mm causing UAF in T1. To avoid this we move vma->vm_mm verification into vma_start_read() and grab vma->vm_mm to stabilize it before vma_refcount_put() operation. [surenb@google.com: v3]
CVE-2025-38553 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/sched: Restrict conditions for adding duplicating netems to qdisc tree netem_enqueue's duplication prevention logic breaks when a netem resides in a qdisc tree with other netems - this can lead to a soft lockup and OOM loop in netem_dequeue, as seen in [1]. Ensure that a duplicating netem cannot exist in a tree with other netems. Previous approaches suggested in discussions in chronological order: 1) Track duplication status or ttl in the sk_buff struct. Considered too specific a use case to extend such a struct, though this would be a resilient fix and address other previous and potential future DOS bugs like the one described in loopy fun [2]. 2) Restrict netem_enqueue recursion depth like in act_mirred with a per cpu variable. However, netem_dequeue can call enqueue on its child, and the depth restriction could be bypassed if the child is a netem. 3) Use the same approach as in 2, but add metadata in netem_skb_cb to handle the netem_dequeue case and track a packet's involvement in duplication. This is an overly complex approach, and Jamal notes that the skb cb can be overwritten to circumvent this safeguard. 4) Prevent the addition of a netem to a qdisc tree if its ancestral path contains a netem. However, filters and actions can cause a packet to change paths when re-enqueued to the root from netem duplication, leading us to the current solution: prevent a duplicating netem from inhabiting the same tree as other netems. [1] https://lore.kernel.org/netdev/8DuRWwfqjoRDLDmBMlIfbrsZg9Gx50DHJc1ilxsEBNe2D6NMoigR_eIRIG0LOjMc3r10nUUZtArXx4oZBIdUfZQrwjcQhdinnMis_0G7VEk=@willsroot.io/ [2] https://lwn.net/Articles/719297/
CVE-2025-38502 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix oob access in cgroup local storage Lonial reported that an out-of-bounds access in cgroup local storage can be crafted via tail calls. Given two programs each utilizing a cgroup local storage with a different value size, and one program doing a tail call into the other. The verifier will validate each of the indivial programs just fine. However, in the runtime context the bpf_cg_run_ctx holds an bpf_prog_array_item which contains the BPF program as well as any cgroup local storage flavor the program uses. Helpers such as bpf_get_local_storage() pick this up from the runtime context: ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); storage = ctx->prog_item->cgroup_storage[stype]; if (stype == BPF_CGROUP_STORAGE_SHARED) ptr = &READ_ONCE(storage->buf)->data[0]; else ptr = this_cpu_ptr(storage->percpu_buf); For the second program which was called from the originally attached one, this means bpf_get_local_storage() will pick up the former program's map, not its own. With mismatching sizes, this can result in an unintended out-of-bounds access. To fix this issue, we need to extend bpf_map_owner with an array of storage_cookie[] to match on i) the exact maps from the original program if the second program was using bpf_get_local_storage(), or ii) allow the tail call combination if the second program was not using any of the cgroup local storage maps.
CVE-2025-38501 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: limit repeated connections from clients with the same IP Repeated connections from clients with the same IP address may exhaust the max connections and prevent other normal client connections. This patch limit repeated connections from clients with the same IP.