| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: mt8183: fix refcount leak in mt8183_mt6358_ts3a227_max98357_dev_probe()
The node returned by of_parse_phandle() with refcount incremented,
of_node_put() needs be called when finish using it. So add it in the
error path in mt8183_mt6358_ts3a227_max98357_dev_probe(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: sched: fix memory leak in tcindex_set_parms
Syzkaller reports a memory leak as follows:
====================================
BUG: memory leak
unreferenced object 0xffff88810c287f00 (size 256):
comm "syz-executor105", pid 3600, jiffies 4294943292 (age 12.990s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff814cf9f0>] kmalloc_trace+0x20/0x90 mm/slab_common.c:1046
[<ffffffff839c9e07>] kmalloc include/linux/slab.h:576 [inline]
[<ffffffff839c9e07>] kmalloc_array include/linux/slab.h:627 [inline]
[<ffffffff839c9e07>] kcalloc include/linux/slab.h:659 [inline]
[<ffffffff839c9e07>] tcf_exts_init include/net/pkt_cls.h:250 [inline]
[<ffffffff839c9e07>] tcindex_set_parms+0xa7/0xbe0 net/sched/cls_tcindex.c:342
[<ffffffff839caa1f>] tcindex_change+0xdf/0x120 net/sched/cls_tcindex.c:553
[<ffffffff8394db62>] tc_new_tfilter+0x4f2/0x1100 net/sched/cls_api.c:2147
[<ffffffff8389e91c>] rtnetlink_rcv_msg+0x4dc/0x5d0 net/core/rtnetlink.c:6082
[<ffffffff839eba67>] netlink_rcv_skb+0x87/0x1d0 net/netlink/af_netlink.c:2540
[<ffffffff839eab87>] netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline]
[<ffffffff839eab87>] netlink_unicast+0x397/0x4c0 net/netlink/af_netlink.c:1345
[<ffffffff839eb046>] netlink_sendmsg+0x396/0x710 net/netlink/af_netlink.c:1921
[<ffffffff8383e796>] sock_sendmsg_nosec net/socket.c:714 [inline]
[<ffffffff8383e796>] sock_sendmsg+0x56/0x80 net/socket.c:734
[<ffffffff8383eb08>] ____sys_sendmsg+0x178/0x410 net/socket.c:2482
[<ffffffff83843678>] ___sys_sendmsg+0xa8/0x110 net/socket.c:2536
[<ffffffff838439c5>] __sys_sendmmsg+0x105/0x330 net/socket.c:2622
[<ffffffff83843c14>] __do_sys_sendmmsg net/socket.c:2651 [inline]
[<ffffffff83843c14>] __se_sys_sendmmsg net/socket.c:2648 [inline]
[<ffffffff83843c14>] __x64_sys_sendmmsg+0x24/0x30 net/socket.c:2648
[<ffffffff84605fd5>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff84605fd5>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
[<ffffffff84800087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
====================================
Kernel uses tcindex_change() to change an existing
filter properties.
Yet the problem is that, during the process of changing,
if `old_r` is retrieved from `p->perfect`, then
kernel uses tcindex_alloc_perfect_hash() to newly
allocate filter results, uses tcindex_filter_result_init()
to clear the old filter result, without destroying
its tcf_exts structure, which triggers the above memory leak.
To be more specific, there are only two source for the `old_r`,
according to the tcindex_lookup(). `old_r` is retrieved from
`p->perfect`, or `old_r` is retrieved from `p->h`.
* If `old_r` is retrieved from `p->perfect`, kernel uses
tcindex_alloc_perfect_hash() to newly allocate the
filter results. Then `r` is assigned with `cp->perfect + handle`,
which is newly allocated. So condition `old_r && old_r != r` is
true in this situation, and kernel uses tcindex_filter_result_init()
to clear the old filter result, without destroying
its tcf_exts structure
* If `old_r` is retrieved from `p->h`, then `p->perfect` is NULL
according to the tcindex_lookup(). Considering that `cp->h`
is directly copied from `p->h` and `p->perfect` is NULL,
`r` is assigned with `tcindex_lookup(cp, handle)`, whose value
should be the same as `old_r`, so condition `old_r && old_r != r`
is false in this situation, kernel ignores using
tcindex_filter_result_init() to clear the old filter result.
So only when `old_r` is retrieved from `p->perfect` does kernel use
tcindex_filter_result_init() to clear the old filter result, which
triggers the above memory leak.
Considering that there already exists a tc_filter_wq workqueue
to destroy the old tcindex_d
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
integrity: Fix memory leakage in keyring allocation error path
Key restriction is allocated in integrity_init_keyring(). However, if
keyring allocation failed, it is not freed, causing memory leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mempolicy: fix memory leak in set_mempolicy_home_node system call
When encountering any vma in the range with policy other than MPOL_BIND or
MPOL_PREFERRED_MANY, an error is returned without issuing a mpol_put on
the policy just allocated with mpol_dup().
This allows arbitrary users to leak kernel memory. |
| In the Linux kernel, the following vulnerability has been resolved:
tpm: tpm_crb: Add the missed acpi_put_table() to fix memory leak
In crb_acpi_add(), we get the TPM2 table to retrieve information
like start method, and then assign them to the priv data, so the
TPM2 table is not used after the init, should be freed, call
acpi_put_table() to fix the memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hinic: fix the issue of CMDQ memory leaks
When hinic_set_cmdq_depth() fails in hinic_init_cmdqs(), the cmdq memory is
not released correctly. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once. |
| In the Linux kernel, the following vulnerability has been resolved:
of_numa: fix uninitialized memory nodes causing kernel panic
When there are memory-only nodes (nodes without CPUs), these nodes are not
properly initialized, causing kernel panic during boot.
of_numa_init
of_numa_parse_cpu_nodes
node_set(nid, numa_nodes_parsed);
of_numa_parse_memory_nodes
In of_numa_parse_cpu_nodes, numa_nodes_parsed gets updated only for nodes
containing CPUs. Memory-only nodes should have been updated in
of_numa_parse_memory_nodes, but they weren't.
Subsequently, when free_area_init() attempts to access NODE_DATA() for
these uninitialized memory nodes, the kernel panics due to NULL pointer
dereference.
This can be reproduced on ARM64 QEMU with 1 CPU and 2 memory nodes:
qemu-system-aarch64 \
-cpu host -nographic \
-m 4G -smp 1 \
-machine virt,accel=kvm,gic-version=3,iommu=smmuv3 \
-object memory-backend-ram,size=2G,id=mem0 \
-object memory-backend-ram,size=2G,id=mem1 \
-numa node,nodeid=0,memdev=mem0 \
-numa node,nodeid=1,memdev=mem1 \
-kernel $IMAGE \
-hda $DISK \
-append "console=ttyAMA0 root=/dev/vda rw earlycon"
[ 0.000000] Booting Linux on physical CPU 0x0000000000 [0x481fd010]
[ 0.000000] Linux version 6.17.0-rc1-00001-gabb4b3daf18c-dirty (yintirui@local) (gcc (GCC) 12.3.1, GNU ld (GNU Binutils) 2.41) #52 SMP PREEMPT Mon Aug 18 09:49:40 CST 2025
[ 0.000000] KASLR enabled
[ 0.000000] random: crng init done
[ 0.000000] Machine model: linux,dummy-virt
[ 0.000000] efi: UEFI not found.
[ 0.000000] earlycon: pl11 at MMIO 0x0000000009000000 (options '')
[ 0.000000] printk: legacy bootconsole [pl11] enabled
[ 0.000000] OF: reserved mem: Reserved memory: No reserved-memory node in the DT
[ 0.000000] NODE_DATA(0) allocated [mem 0xbfffd9c0-0xbfffffff]
[ 0.000000] node 1 must be removed before remove section 23
[ 0.000000] Zone ranges:
[ 0.000000] DMA [mem 0x0000000040000000-0x00000000ffffffff]
[ 0.000000] DMA32 empty
[ 0.000000] Normal [mem 0x0000000100000000-0x000000013fffffff]
[ 0.000000] Movable zone start for each node
[ 0.000000] Early memory node ranges
[ 0.000000] node 0: [mem 0x0000000040000000-0x00000000bfffffff]
[ 0.000000] node 1: [mem 0x00000000c0000000-0x000000013fffffff]
[ 0.000000] Initmem setup node 0 [mem 0x0000000040000000-0x00000000bfffffff]
[ 0.000000] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a0
[ 0.000000] Mem abort info:
[ 0.000000] ESR = 0x0000000096000004
[ 0.000000] EC = 0x25: DABT (current EL), IL = 32 bits
[ 0.000000] SET = 0, FnV = 0
[ 0.000000] EA = 0, S1PTW = 0
[ 0.000000] FSC = 0x04: level 0 translation fault
[ 0.000000] Data abort info:
[ 0.000000] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
[ 0.000000] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 0.000000] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 0.000000] [00000000000000a0] user address but active_mm is swapper
[ 0.000000] Internal error: Oops: 0000000096000004 [#1] SMP
[ 0.000000] Modules linked in:
[ 0.000000] CPU: 0 UID: 0 PID: 0 Comm: swapper Not tainted 6.17.0-rc1-00001-g760c6dabf762-dirty #54 PREEMPT
[ 0.000000] Hardware name: linux,dummy-virt (DT)
[ 0.000000] pstate: 800000c5 (Nzcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 0.000000] pc : free_area_init+0x50c/0xf9c
[ 0.000000] lr : free_area_init+0x5c0/0xf9c
[ 0.000000] sp : ffffa02ca0f33c00
[ 0.000000] x29: ffffa02ca0f33cb0 x28: 0000000000000000 x27: 0000000000000000
[ 0.000000] x26: 4ec4ec4ec4ec4ec5 x25: 00000000000c0000 x24: 00000000000c0000
[ 0.000000] x23: 0000000000040000 x22: 0000000000000000 x21: ffffa02ca0f3b368
[ 0.000000] x20: ffffa02ca14c7b98 x19: 0000000000000000 x18: 0000000000000002
[ 0.000000] x17: 000000000000cacc x16: 0000000000000001 x15: 0000000000000001
[ 0.000000] x14: 0000000080000000 x13: 0000000000000018 x12: 0000000000000002
[ 0.0
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
tracing/osnoise: Fix null-ptr-deref in bitmap_parselist()
A crash was observed with the following output:
BUG: kernel NULL pointer dereference, address: 0000000000000010
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 2 UID: 0 PID: 92 Comm: osnoise_cpus Not tainted 6.17.0-rc4-00201-gd69eb204c255 #138 PREEMPT(voluntary)
RIP: 0010:bitmap_parselist+0x53/0x3e0
Call Trace:
<TASK>
osnoise_cpus_write+0x7a/0x190
vfs_write+0xf8/0x410
? do_sys_openat2+0x88/0xd0
ksys_write+0x60/0xd0
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
This issue can be reproduced by below code:
fd=open("/sys/kernel/debug/tracing/osnoise/cpus", O_WRONLY);
write(fd, "0-2", 0);
When user pass 'count=0' to osnoise_cpus_write(), kmalloc() will return
ZERO_SIZE_PTR (16) and cpulist_parse() treat it as a normal value, which
trigger the null pointer dereference. Add check for the parameter 'count'. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix crash after fscrypt_encrypt_pagecache_blocks() error
The function move_dirty_folio_in_page_array() was created by commit
ce80b76dd327 ("ceph: introduce ceph_process_folio_batch() method") by
moving code from ceph_writepages_start() to this function.
This new function is supposed to return an error code which is checked
by the caller (now ceph_process_folio_batch()), and on error, the
caller invokes redirty_page_for_writepage() and then breaks from the
loop.
However, the refactoring commit has gone wrong, and it by accident, it
always returns 0 (= success) because it first NULLs the pointer and
then returns PTR_ERR(NULL) which is always 0. This means errors are
silently ignored, leaving NULL entries in the page array, which may
later crash the kernel.
The simple solution is to call PTR_ERR() before clearing the pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
igb: Fix NULL pointer dereference in ethtool loopback test
The igb driver currently causes a NULL pointer dereference when executing
the ethtool loopback test. This occurs because there is no associated
q_vector for the test ring when it is set up, as interrupts are typically
not added to the test rings.
Since commit 5ef44b3cb43b removed the napi_id assignment in
__xdp_rxq_info_reg(), there is no longer a need to pass a napi_id to it.
Therefore, simply use 0 as the last parameter. |
| Time-of-check time-of-use (toctou) race condition in Microsoft Defender for Linux allows an authorized attacker to deny service locally. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: am65-cpsw-nuss: Fix null pointer dereference for ndev
In the TX completion packet stage of TI SoCs with CPSW2G instance, which
has single external ethernet port, ndev is accessed without being
initialized if no TX packets have been processed. It results into null
pointer dereference, causing kernel to crash. Fix this by having a check
on the number of TX packets which have been processed. |
| Inadequate encryption strength in .NET, .NET Framework, Visual Studio allows an authorized attacker to disclose information over a network. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: kmem: fix a NULL pointer dereference in obj_stock_flush_required()
KCSAN found an issue in obj_stock_flush_required():
stock->cached_objcg can be reset between the check and dereference:
==================================================================
BUG: KCSAN: data-race in drain_all_stock / drain_obj_stock
write to 0xffff888237c2a2f8 of 8 bytes by task 19625 on cpu 0:
drain_obj_stock+0x408/0x4e0 mm/memcontrol.c:3306
refill_obj_stock+0x9c/0x1e0 mm/memcontrol.c:3340
obj_cgroup_uncharge+0xe/0x10 mm/memcontrol.c:3408
memcg_slab_free_hook mm/slab.h:587 [inline]
__cache_free mm/slab.c:3373 [inline]
__do_kmem_cache_free mm/slab.c:3577 [inline]
kmem_cache_free+0x105/0x280 mm/slab.c:3602
__d_free fs/dcache.c:298 [inline]
dentry_free fs/dcache.c:375 [inline]
__dentry_kill+0x422/0x4a0 fs/dcache.c:621
dentry_kill+0x8d/0x1e0
dput+0x118/0x1f0 fs/dcache.c:913
__fput+0x3bf/0x570 fs/file_table.c:329
____fput+0x15/0x20 fs/file_table.c:349
task_work_run+0x123/0x160 kernel/task_work.c:179
resume_user_mode_work include/linux/resume_user_mode.h:49 [inline]
exit_to_user_mode_loop+0xcf/0xe0 kernel/entry/common.c:171
exit_to_user_mode_prepare+0x6a/0xa0 kernel/entry/common.c:203
__syscall_exit_to_user_mode_work kernel/entry/common.c:285 [inline]
syscall_exit_to_user_mode+0x26/0x140 kernel/entry/common.c:296
do_syscall_64+0x4d/0xc0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffff888237c2a2f8 of 8 bytes by task 19632 on cpu 1:
obj_stock_flush_required mm/memcontrol.c:3319 [inline]
drain_all_stock+0x174/0x2a0 mm/memcontrol.c:2361
try_charge_memcg+0x6d0/0xd10 mm/memcontrol.c:2703
try_charge mm/memcontrol.c:2837 [inline]
mem_cgroup_charge_skmem+0x51/0x140 mm/memcontrol.c:7290
sock_reserve_memory+0xb1/0x390 net/core/sock.c:1025
sk_setsockopt+0x800/0x1e70 net/core/sock.c:1525
udp_lib_setsockopt+0x99/0x6c0 net/ipv4/udp.c:2692
udp_setsockopt+0x73/0xa0 net/ipv4/udp.c:2817
sock_common_setsockopt+0x61/0x70 net/core/sock.c:3668
__sys_setsockopt+0x1c3/0x230 net/socket.c:2271
__do_sys_setsockopt net/socket.c:2282 [inline]
__se_sys_setsockopt net/socket.c:2279 [inline]
__x64_sys_setsockopt+0x66/0x80 net/socket.c:2279
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0xffff8881382d52c0 -> 0xffff888138893740
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 19632 Comm: syz-executor.0 Not tainted 6.3.0-rc2-syzkaller-00387-g534293368afa #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/02/2023
Fix it by using READ_ONCE()/WRITE_ONCE() for all accesses to
stock->cached_objcg. |
| Improper link resolution before file access ('link following') in .NET allows an authorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix NULL pointer dereference in smb2_get_info_filesystem()
If share is , share->path is NULL and it cause NULL pointer
dereference issue. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: fix multipath crash caused by flush request when blktrace is enabled
The flush request initialized by blk_kick_flush has NULL bio,
and it may be dealt with nvme_end_req during io completion.
When blktrace is enabled, nvme_trace_bio_complete with multipath
activated trying to access NULL pointer bio from flush request
results in the following crash:
[ 2517.831677] BUG: kernel NULL pointer dereference, address: 000000000000001a
[ 2517.835213] #PF: supervisor read access in kernel mode
[ 2517.838724] #PF: error_code(0x0000) - not-present page
[ 2517.842222] PGD 7b2d51067 P4D 0
[ 2517.845684] Oops: 0000 [#1] SMP NOPTI
[ 2517.849125] CPU: 2 PID: 732 Comm: kworker/2:1H Kdump: loaded Tainted: G S 5.15.67-0.cl9.x86_64 #1
[ 2517.852723] Hardware name: XFUSION 2288H V6/BC13MBSBC, BIOS 1.13 07/27/2022
[ 2517.856358] Workqueue: nvme_tcp_wq nvme_tcp_io_work [nvme_tcp]
[ 2517.859993] RIP: 0010:blk_add_trace_bio_complete+0x6/0x30
[ 2517.863628] Code: 1f 44 00 00 48 8b 46 08 31 c9 ba 04 00 10 00 48 8b 80 50 03 00 00 48 8b 78 50 e9 e5 fe ff ff 0f 1f 44 00 00 41 54 49 89 f4 55 <0f> b6 7a 1a 48 89 d5 e8 3e 1c 2b 00 48 89 ee 4c 89 e7 5d 89 c1 ba
[ 2517.871269] RSP: 0018:ff7f6a008d9dbcd0 EFLAGS: 00010286
[ 2517.875081] RAX: ff3d5b4be00b1d50 RBX: 0000000002040002 RCX: ff3d5b0a270f2000
[ 2517.878966] RDX: 0000000000000000 RSI: ff3d5b0b021fb9f8 RDI: 0000000000000000
[ 2517.882849] RBP: ff3d5b0b96a6fa00 R08: 0000000000000001 R09: 0000000000000000
[ 2517.886718] R10: 000000000000000c R11: 000000000000000c R12: ff3d5b0b021fb9f8
[ 2517.890575] R13: 0000000002000000 R14: ff3d5b0b021fb1b0 R15: 0000000000000018
[ 2517.894434] FS: 0000000000000000(0000) GS:ff3d5b42bfc80000(0000) knlGS:0000000000000000
[ 2517.898299] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 2517.902157] CR2: 000000000000001a CR3: 00000004f023e005 CR4: 0000000000771ee0
[ 2517.906053] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 2517.909930] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 2517.913761] PKRU: 55555554
[ 2517.917558] Call Trace:
[ 2517.921294] <TASK>
[ 2517.924982] nvme_complete_rq+0x1c3/0x1e0 [nvme_core]
[ 2517.928715] nvme_tcp_recv_pdu+0x4d7/0x540 [nvme_tcp]
[ 2517.932442] nvme_tcp_recv_skb+0x4f/0x240 [nvme_tcp]
[ 2517.936137] ? nvme_tcp_recv_pdu+0x540/0x540 [nvme_tcp]
[ 2517.939830] tcp_read_sock+0x9c/0x260
[ 2517.943486] nvme_tcp_try_recv+0x65/0xa0 [nvme_tcp]
[ 2517.947173] nvme_tcp_io_work+0x64/0x90 [nvme_tcp]
[ 2517.950834] process_one_work+0x1e8/0x390
[ 2517.954473] worker_thread+0x53/0x3c0
[ 2517.958069] ? process_one_work+0x390/0x390
[ 2517.961655] kthread+0x10c/0x130
[ 2517.965211] ? set_kthread_struct+0x40/0x40
[ 2517.968760] ret_from_fork+0x1f/0x30
[ 2517.972285] </TASK>
To avoid this situation, add a NULL check for req->bio before
calling trace_block_bio_complete. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4.2: Rework scratch handling for READ_PLUS (again)
I found that the read code might send multiple requests using the same
nfs_pgio_header, but nfs4_proc_read_setup() is only called once. This is
how we ended up occasionally double-freeing the scratch buffer, but also
means we set a NULL pointer but non-zero length to the xdr scratch
buffer. This results in an oops the first time decoding needs to copy
something to scratch, which frequently happens when decoding READ_PLUS
hole segments.
I fix this by moving scratch handling into the pageio read code. I
provide a function to allocate scratch space for decoding read replies,
and free the scratch buffer when the nfs_pgio_header is freed. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: da9063: better fix null deref with partial DT
Two versions of the original patch were sent but V1 was merged instead
of V2 due to a mistake.
So update to V2.
The advantage of V2 is that it completely avoids dereferencing the pointer,
even just to take the address, which may fix problems with some compilers.
Both versions work on my gcc 9.4 but use the safer one. |