| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: Fix possible memory leaks in dsa_loop_init()
kmemleak reported memory leaks in dsa_loop_init():
kmemleak: 12 new suspected memory leaks
unreferenced object 0xffff8880138ce000 (size 2048):
comm "modprobe", pid 390, jiffies 4295040478 (age 238.976s)
backtrace:
[<000000006a94f1d5>] kmalloc_trace+0x26/0x60
[<00000000a9c44622>] phy_device_create+0x5d/0x970
[<00000000d0ee2afc>] get_phy_device+0xf3/0x2b0
[<00000000dca0c71f>] __fixed_phy_register.part.0+0x92/0x4e0
[<000000008a834798>] fixed_phy_register+0x84/0xb0
[<0000000055223fcb>] dsa_loop_init+0xa9/0x116 [dsa_loop]
...
There are two reasons for memleak in dsa_loop_init().
First, fixed_phy_register() create and register phy_device:
fixed_phy_register()
get_phy_device()
phy_device_create() # freed by phy_device_free()
phy_device_register() # freed by phy_device_remove()
But fixed_phy_unregister() only calls phy_device_remove().
So the memory allocated in phy_device_create() is leaked.
Second, when mdio_driver_register() fail in dsa_loop_init(),
it just returns and there is no cleanup for phydevs.
Fix the problems by catching the error of mdio_driver_register()
in dsa_loop_init(), then calling both fixed_phy_unregister() and
phy_device_free() to release phydevs.
Also add a function for phydevs cleanup to avoid duplacate. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: fdp: Fix potential memory leak in fdp_nci_send()
fdp_nci_send() will call fdp_nci_i2c_write that will not free skb in
the function. As a result, when fdp_nci_i2c_write() finished, the skb
will memleak. fdp_nci_send() should free skb after fdp_nci_i2c_write()
finished. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: nxp-nci: Fix potential memory leak in nxp_nci_send()
nxp_nci_send() will call nxp_nci_i2c_write(), and only free skb when
nxp_nci_i2c_write() failed. However, even if the nxp_nci_i2c_write()
run succeeds, the skb will not be freed in nxp_nci_i2c_write(). As the
result, the skb will memleak. nxp_nci_send() should also free the skb
when nxp_nci_i2c_write() succeeds. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: nfcmrvl: Fix potential memory leak in nfcmrvl_i2c_nci_send()
nfcmrvl_i2c_nci_send() will be called by nfcmrvl_nci_send(), and skb
should be freed in nfcmrvl_i2c_nci_send(). However, nfcmrvl_nci_send()
will only free skb when i2c_master_send() return >=0, which means skb
will memleak when i2c_master_send() failed. Free skb no matter whether
i2c_master_send() succeeds. |
| In the Linux kernel, the following vulnerability has been resolved:
block: Fix possible memory leak for rq_wb on add_disk failure
kmemleak reported memory leaks in device_add_disk():
kmemleak: 3 new suspected memory leaks
unreferenced object 0xffff88800f420800 (size 512):
comm "modprobe", pid 4275, jiffies 4295639067 (age 223.512s)
hex dump (first 32 bytes):
04 00 00 00 08 00 00 00 01 00 00 00 00 00 00 00 ................
00 e1 f5 05 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000d3662699>] kmalloc_trace+0x26/0x60
[<00000000edc7aadc>] wbt_init+0x50/0x6f0
[<0000000069601d16>] wbt_enable_default+0x157/0x1c0
[<0000000028fc393f>] blk_register_queue+0x2a4/0x420
[<000000007345a042>] device_add_disk+0x6fd/0xe40
[<0000000060e6aab0>] nbd_dev_add+0x828/0xbf0 [nbd]
...
It is because the memory allocated in wbt_enable_default() is not
released in device_add_disk() error path.
Normally, these memory are freed in:
del_gendisk()
rq_qos_exit()
rqos->ops->exit(rqos);
wbt_exit()
So rq_qos_exit() is called to free the rq_wb memory for wbt_init().
However in the error path of device_add_disk(), only
blk_unregister_queue() is called and make rq_wb memory leaked.
Add rq_qos_exit() to the error path to fix it. |
| A vulnerability classified as problematic has been found in HTACG tidy-html5 5.8.0. Affected is the function defaultAlloc of the file src/alloc.c. The manipulation leads to memory leak. It is possible to launch the attack on the local host. The exploit has been disclosed to the public and may be used. |
| In the Linux kernel, the following vulnerability has been resolved:
hv_netvsc: Don't free decrypted memory
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
The netvsc driver could free decrypted/shared pages if
set_memory_decrypted() fails. Check the decrypted field in the gpadl
to decide whether to free the memory. |
| In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Don't free ring buffers that couldn't be re-encrypted
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
The VMBus ring buffer code could free decrypted/shared pages if
set_memory_decrypted() fails. Check the decrypted field in the struct
vmbus_gpadl for the ring buffers to decide whether to free the memory. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/core: fix new damon_target objects leaks on damon_commit_targets()
Patch series "mm/damon/core: fix memory leaks and ignored inputs from
damon_commit_ctx()".
Due to two bugs in damon_commit_targets() and damon_commit_schemes(),
which are called from damon_commit_ctx(), some user inputs can be ignored,
and some mmeory objects can be leaked. Fix those.
Note that only DAMON sysfs interface users are affected. Other DAMON core
API user modules that more focused more on simple and dedicated production
usages, including DAMON_RECLAIM and DAMON_LRU_SORT are not using the buggy
function in the way, so not affected.
This patch (of 2):
When new DAMON targets are added via damon_commit_targets(), the newly
created targets are not deallocated when updating the internal data
(damon_commit_target()) is failed. Worse yet, even if the setup is
successfully done, the new target is not linked to the context. Hence,
the new targets are always leaked regardless of the internal data setup
failure. Fix the leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/kmemleak: fix sleeping function called from invalid context at print message
Address a bug in the kernel that triggers a "sleeping function called from
invalid context" warning when /sys/kernel/debug/kmemleak is printed under
specific conditions:
- CONFIG_PREEMPT_RT=y
- Set SELinux as the LSM for the system
- Set kptr_restrict to 1
- kmemleak buffer contains at least one item
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 136, name: cat
preempt_count: 1, expected: 0
RCU nest depth: 2, expected: 2
6 locks held by cat/136:
#0: ffff32e64bcbf950 (&p->lock){+.+.}-{3:3}, at: seq_read_iter+0xb8/0xe30
#1: ffffafe6aaa9dea0 (scan_mutex){+.+.}-{3:3}, at: kmemleak_seq_start+0x34/0x128
#3: ffff32e6546b1cd0 (&object->lock){....}-{2:2}, at: kmemleak_seq_show+0x3c/0x1e0
#4: ffffafe6aa8d8560 (rcu_read_lock){....}-{1:2}, at: has_ns_capability_noaudit+0x8/0x1b0
#5: ffffafe6aabbc0f8 (notif_lock){+.+.}-{2:2}, at: avc_compute_av+0xc4/0x3d0
irq event stamp: 136660
hardirqs last enabled at (136659): [<ffffafe6a80fd7a0>] _raw_spin_unlock_irqrestore+0xa8/0xd8
hardirqs last disabled at (136660): [<ffffafe6a80fd85c>] _raw_spin_lock_irqsave+0x8c/0xb0
softirqs last enabled at (0): [<ffffafe6a5d50b28>] copy_process+0x11d8/0x3df8
softirqs last disabled at (0): [<0000000000000000>] 0x0
Preemption disabled at:
[<ffffafe6a6598a4c>] kmemleak_seq_show+0x3c/0x1e0
CPU: 1 UID: 0 PID: 136 Comm: cat Tainted: G E 6.11.0-rt7+ #34
Tainted: [E]=UNSIGNED_MODULE
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0xa0/0x128
show_stack+0x1c/0x30
dump_stack_lvl+0xe8/0x198
dump_stack+0x18/0x20
rt_spin_lock+0x8c/0x1a8
avc_perm_nonode+0xa0/0x150
cred_has_capability.isra.0+0x118/0x218
selinux_capable+0x50/0x80
security_capable+0x7c/0xd0
has_ns_capability_noaudit+0x94/0x1b0
has_capability_noaudit+0x20/0x30
restricted_pointer+0x21c/0x4b0
pointer+0x298/0x760
vsnprintf+0x330/0xf70
seq_printf+0x178/0x218
print_unreferenced+0x1a4/0x2d0
kmemleak_seq_show+0xd0/0x1e0
seq_read_iter+0x354/0xe30
seq_read+0x250/0x378
full_proxy_read+0xd8/0x148
vfs_read+0x190/0x918
ksys_read+0xf0/0x1e0
__arm64_sys_read+0x70/0xa8
invoke_syscall.constprop.0+0xd4/0x1d8
el0_svc+0x50/0x158
el0t_64_sync+0x17c/0x180
%pS and %pK, in the same back trace line, are redundant, and %pS can void
%pK service in certain contexts.
%pS alone already provides the necessary information, and if it cannot
resolve the symbol, it falls back to printing the raw address voiding
the original intent behind the %pK.
Additionally, %pK requires a privilege check CAP_SYSLOG enforced through
the LSM, which can trigger a "sleeping function called from invalid
context" warning under RT_PREEMPT kernels when the check occurs in an
atomic context. This issue may also affect other LSMs.
This change avoids the unnecessary privilege check and resolves the
sleeping function warning without any loss of information. |
| In the Linux kernel, the following vulnerability has been resolved:
lib: alloc_tag_module_unload must wait for pending kfree_rcu calls
Ben Greear reports following splat:
------------[ cut here ]------------
net/netfilter/nf_nat_core.c:1114 module nf_nat func:nf_nat_register_fn has 256 allocated at module unload
WARNING: CPU: 1 PID: 10421 at lib/alloc_tag.c:168 alloc_tag_module_unload+0x22b/0x3f0
Modules linked in: nf_nat(-) btrfs ufs qnx4 hfsplus hfs minix vfat msdos fat
...
Hardware name: Default string Default string/SKYBAY, BIOS 5.12 08/04/2020
RIP: 0010:alloc_tag_module_unload+0x22b/0x3f0
codetag_unload_module+0x19b/0x2a0
? codetag_load_module+0x80/0x80
nf_nat module exit calls kfree_rcu on those addresses, but the free
operation is likely still pending by the time alloc_tag checks for leaks.
Wait for outstanding kfree_rcu operations to complete before checking
resolves this warning.
Reproducer:
unshare -n iptables-nft -t nat -A PREROUTING -p tcp
grep nf_nat /proc/allocinfo # will list 4 allocations
rmmod nft_chain_nat
rmmod nf_nat # will WARN.
[akpm@linux-foundation.org: add comment] |
| A memory leak in the headless API for StructuredContents in Liferay Portal 7.4.0 through 7.4.3.119, and older unsupported versions, and Liferay DXP 2024.Q1.1 through 2024.Q1.5, 2023.Q4.0 through 2024.Q4.10, 2023.Q3.1 through 2023.Q3.10, 7.4 GA through update 92, and older unsupported versions allows an attacker to cause server unavailability (denial of service) via repeatedly calling the API endpoint. |
| In the Linux kernel, the following vulnerability has been resolved:
net: mctp: take ownership of skb in mctp_local_output
Currently, mctp_local_output only takes ownership of skb on success, and
we may leak an skb if mctp_local_output fails in specific states; the
skb ownership isn't transferred until the actual output routing occurs.
Instead, make mctp_local_output free the skb on all error paths up to
the route action, so it always consumes the passed skb. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: Fix release of pinned pages when __io_uaddr_map fails
Looking at the error path of __io_uaddr_map, if we fail after pinning
the pages for any reasons, ret will be set to -EINVAL and the error
handler won't properly release the pinned pages.
I didn't manage to trigger it without forcing a failure, but it can
happen in real life when memory is heavily fragmented. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Fix out_fput in iommufd_fault_alloc()
As fput() calls the file->f_op->release op, where fault obj and ictx are
getting released, there is no need to release these two after fput() one
more time, which would result in imbalanced refcounts:
refcount_t: decrement hit 0; leaking memory.
WARNING: CPU: 48 PID: 2369 at lib/refcount.c:31 refcount_warn_saturate+0x60/0x230
Call trace:
refcount_warn_saturate+0x60/0x230 (P)
refcount_warn_saturate+0x60/0x230 (L)
iommufd_fault_fops_release+0x9c/0xe0 [iommufd]
...
VFS: Close: file count is 0 (f_op=iommufd_fops [iommufd])
WARNING: CPU: 48 PID: 2369 at fs/open.c:1507 filp_flush+0x3c/0xf0
Call trace:
filp_flush+0x3c/0xf0 (P)
filp_flush+0x3c/0xf0 (L)
__arm64_sys_close+0x34/0x98
...
imbalanced put on file reference count
WARNING: CPU: 48 PID: 2369 at fs/file.c:74 __file_ref_put+0x100/0x138
Call trace:
__file_ref_put+0x100/0x138 (P)
__file_ref_put+0x100/0x138 (L)
__fput_sync+0x4c/0xd0
Drop those two lines to fix the warnings above. |
| In the Linux kernel, the following vulnerability has been resolved:
firewire: ohci: prevent leak of left-over IRQ on unbind
Commit 5a95f1ded28691e6 ("firewire: ohci: use devres for requested IRQ")
also removed the call to free_irq() in pci_remove(), leading to a
leftover irq of devm_request_irq() at pci_disable_msi() in pci_remove()
when unbinding the driver from the device
remove_proc_entry: removing non-empty directory 'irq/136', leaking at
least 'firewire_ohci'
Call Trace:
? remove_proc_entry+0x19c/0x1c0
? __warn+0x81/0x130
? remove_proc_entry+0x19c/0x1c0
? report_bug+0x171/0x1a0
? console_unlock+0x78/0x120
? handle_bug+0x3c/0x80
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? remove_proc_entry+0x19c/0x1c0
unregister_irq_proc+0xf4/0x120
free_desc+0x3d/0xe0
? kfree+0x29f/0x2f0
irq_free_descs+0x47/0x70
msi_domain_free_locked.part.0+0x19d/0x1d0
msi_domain_free_irqs_all_locked+0x81/0xc0
pci_free_msi_irqs+0x12/0x40
pci_disable_msi+0x4c/0x60
pci_remove+0x9d/0xc0 [firewire_ohci
01b483699bebf9cb07a3d69df0aa2bee71db1b26]
pci_device_remove+0x37/0xa0
device_release_driver_internal+0x19f/0x200
unbind_store+0xa1/0xb0
remove irq with devm_free_irq() before pci_disable_msi()
also remove it in fail_msi: of pci_probe() as this would lead to
an identical leak |
| gpac v2.2.1 (fixed in v2.4.0) was discovered to contain a memory leak via the gfio_blob variable in the gf_fileio_from_blob function. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/mm: Fix VM_FAULT_HWPOISON handling in do_exception()
There is no support for HWPOISON, MEMORY_FAILURE, or ARCH_HAS_COPY_MC on
s390. Therefore we do not expect to see VM_FAULT_HWPOISON in
do_exception().
However, since commit af19487f00f3 ("mm: make PTE_MARKER_SWAPIN_ERROR more
general"), it is possible to see VM_FAULT_HWPOISON in combination with
PTE_MARKER_POISONED, even on architectures that do not support HWPOISON
otherwise. In this case, we will end up on the BUG() in do_exception().
Fix this by treating VM_FAULT_HWPOISON the same as VM_FAULT_SIGBUS, similar
to x86 when MEMORY_FAILURE is not configured. Also print unexpected fault
flags, for easier debugging.
Note that VM_FAULT_HWPOISON_LARGE is not expected, because s390 cannot
support swap entries on other levels than PTE level. |
| A flaw was found in libsoup. It is vulnerable to memory leaks in the soup_header_parse_quality_list() function when parsing a quality list that contains elements with all zeroes. |
| In the Linux kernel, the following vulnerability has been resolved:
efivarfs: Free s_fs_info on unmount
Now that we allocate a s_fs_info struct on fs context creation, we
should ensure that we free it again when the superblock goes away. |