| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Dnsmasq before 2.63test1, when used with certain libvirt configurations, replies to requests from prohibited interfaces, which allows remote attackers to cause a denial of service (traffic amplification) via a spoofed DNS query. |
| The tftp_request function in tftp.c in dnsmasq before 2.50, when --enable-tftp is used, allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a TFTP read (aka RRQ) request with a malformed blksize option. |
| dnsmasq 2.25 allows remote attackers to cause a denial of service (daemon crash) by (1) renewing a nonexistent lease or (2) sending a DHCPREQUEST for an IP address that is not in the same network, related to the DHCP NAK response from the daemon. |
| Heap-based buffer overflow in the tftp_request function in tftp.c in dnsmasq before 2.50, when --enable-tftp is used, might allow remote attackers to execute arbitrary code via a long filename in a TFTP packet, as demonstrated by a read (aka RRQ) request. |
| Dnsmasq before 2.21 allows remote attackers to poison the DNS cache via answers to queries that were not made by Dnsmasq. |
| dnsmasq 2.9 is vulnerable to Integer Overflow via forward_query. |
| Dnsmasq 2.86 has a heap-based buffer overflow in answer_request (called from FuzzAnswerTheRequest and fuzz_rfc1035.c). NOTE: the vendor's position is that CVE-2021-45951 through CVE-2021-45957 "do not represent real vulnerabilities, to the best of our knowledge. |
| Dnsmasq 2.86 has a heap-based buffer overflow in print_mac (called from log_packet and dhcp_reply). NOTE: the vendor's position is that CVE-2021-45951 through CVE-2021-45957 "do not represent real vulnerabilities, to the best of our knowledge. |
| Dnsmasq 2.86 has a heap-based buffer overflow in resize_packet (called from FuzzResizePacket and fuzz_rfc1035.c) because of the lack of a proper bounds check upon pseudo header re-insertion. NOTE: the vendor's position is that CVE-2021-45951 through CVE-2021-45957 "do not represent real vulnerabilities, to the best of our knowledge." However, a contributor states that a security patch (mentioned in 016162.html) is needed |
| Dnsmasq 2.86 has a heap-based buffer overflow in extract_name (called from answer_auth and FuzzAuth). NOTE: the vendor's position is that CVE-2021-45951 through CVE-2021-45957 "do not represent real vulnerabilities, to the best of our knowledge. |
| Dnsmasq 2.86 has a heap-based buffer overflow in extract_name (called from hash_questions and fuzz_util.c). NOTE: the vendor's position is that CVE-2021-45951 through CVE-2021-45957 "do not represent real vulnerabilities, to the best of our knowledge. |
| Dnsmasq 2.86 has a heap-based buffer overflow in dhcp_reply (called from dhcp_packet and FuzzDhcp). NOTE: the vendor's position is that CVE-2021-45951 through CVE-2021-45957 "do not represent real vulnerabilities, to the best of our knowledge. |
| Dnsmasq 2.86 has a heap-based buffer overflow in check_bad_address (called from check_for_bogus_wildcard and FuzzCheckForBogusWildcard). NOTE: the vendor's position is that CVE-2021-45951 through CVE-2021-45957 "do not represent real vulnerabilities, to the best of our knowledge. |
| A flaw was found in dnsmasq in versions before 2.85. When configured to use a specific server for a given network interface, dnsmasq uses a fixed port while forwarding queries. An attacker on the network, able to find the outgoing port used by dnsmasq, only needs to guess the random transmission ID to forge a reply and get it accepted by dnsmasq. This flaw makes a DNS Cache Poisoning attack much easier. The highest threat from this vulnerability is to data integrity. |
| A vulnerability was found in dnsmasq before version 2.81, where the memory leak allows remote attackers to cause a denial of service (memory consumption) via vectors involving DHCP response creation. |
| Improper bounds checking in Dnsmasq before 2.76 allows an attacker controlled DNS server to send large DNS packets that result in a read operation beyond the buffer allocated for the packet, a different vulnerability than CVE-2017-14491. |
| A vulnerability was found in the implementation of DNSSEC in Dnsmasq up to and including 2.78. Wildcard synthesized NSEC records could be improperly interpreted to prove the non-existence of hostnames that actually exist. |