| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: add cluster chain loop check for dir
An infinite loop may occur if the following conditions occur due to
file system corruption.
(1) Condition for exfat_count_dir_entries() to loop infinitely.
- The cluster chain includes a loop.
- There is no UNUSED entry in the cluster chain.
(2) Condition for exfat_create_upcase_table() to loop infinitely.
- The cluster chain of the root directory includes a loop.
- There are no UNUSED entry and up-case table entry in the cluster
chain of the root directory.
(3) Condition for exfat_load_bitmap() to loop infinitely.
- The cluster chain of the root directory includes a loop.
- There are no UNUSED entry and bitmap entry in the cluster chain
of the root directory.
(4) Condition for exfat_find_dir_entry() to loop infinitely.
- The cluster chain includes a loop.
- The unused directory entries were exhausted by some operation.
(5) Condition for exfat_check_dir_empty() to loop infinitely.
- The cluster chain includes a loop.
- The unused directory entries were exhausted by some operation.
- All files and sub-directories under the directory are deleted.
This commit adds checks to break the above infinite loop. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Make dma-fences compliant with the safe access rules
Xe can free some of the data pointed to by the dma-fences it exports. Most
notably the timeline name can get freed if userspace closes the associated
submit queue. At the same time the fence could have been exported to a
third party (for example a sync_fence fd) which will then cause an use-
after-free on subsequent access.
To make this safe we need to make the driver compliant with the newly
documented dma-fence rules. Driver has to ensure a RCU grace period
between signalling a fence and freeing any data pointed to by said fence.
For the timeline name we simply make the queue be freed via kfree_rcu and
for the shared lock associated with multiple queues we add a RCU grace
period before freeing the per GT structure holding the lock. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: fix null pointer access
Writing a string without delimiters (' ', '\n', '\0') to the under
gpu_od/fan_ctrl sysfs or pp_power_profile_mode for the CUSTOM profile
will result in a null pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
net: lapbether: ignore ops-locked netdevs
Syzkaller managed to trigger lock dependency in xsk_notify via
register_netdevice. As discussed in [0], using register_netdevice
in the notifiers is problematic so skip adding lapbeth for ops-locked
devices.
xsk_notifier+0xa4/0x280 net/xdp/xsk.c:1645
notifier_call_chain+0xbc/0x410 kernel/notifier.c:85
call_netdevice_notifiers_info+0xbe/0x140 net/core/dev.c:2230
call_netdevice_notifiers_extack net/core/dev.c:2268 [inline]
call_netdevice_notifiers net/core/dev.c:2282 [inline]
unregister_netdevice_many_notify+0xf9d/0x2700 net/core/dev.c:12077
unregister_netdevice_many net/core/dev.c:12140 [inline]
unregister_netdevice_queue+0x305/0x3f0 net/core/dev.c:11984
register_netdevice+0x18f1/0x2270 net/core/dev.c:11149
lapbeth_new_device drivers/net/wan/lapbether.c:420 [inline]
lapbeth_device_event+0x5b1/0xbe0 drivers/net/wan/lapbether.c:462
notifier_call_chain+0xbc/0x410 kernel/notifier.c:85
call_netdevice_notifiers_info+0xbe/0x140 net/core/dev.c:2230
call_netdevice_notifiers_extack net/core/dev.c:2268 [inline]
call_netdevice_notifiers net/core/dev.c:2282 [inline]
__dev_notify_flags+0x12c/0x2e0 net/core/dev.c:9497
netif_change_flags+0x108/0x160 net/core/dev.c:9526
dev_change_flags+0xba/0x250 net/core/dev_api.c:68
devinet_ioctl+0x11d5/0x1f50 net/ipv4/devinet.c:1200
inet_ioctl+0x3a7/0x3f0 net/ipv4/af_inet.c:1001
0: https://lore.kernel.org/netdev/20250625140357.6203d0af@kernel.org/ |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: Duplicate SPI Handling
The issue originates when Strongswan initiates an XFRM_MSG_ALLOCSPI
Netlink message, which triggers the kernel function xfrm_alloc_spi().
This function is expected to ensure uniqueness of the Security Parameter
Index (SPI) for inbound Security Associations (SAs). However, it can
return success even when the requested SPI is already in use, leading
to duplicate SPIs assigned to multiple inbound SAs, differentiated
only by their destination addresses.
This behavior causes inconsistencies during SPI lookups for inbound packets.
Since the lookup may return an arbitrary SA among those with the same SPI,
packet processing can fail, resulting in packet drops.
According to RFC 4301 section 4.4.2 , for inbound processing a unicast SA
is uniquely identified by the SPI and optionally protocol.
Reproducing the Issue Reliably:
To consistently reproduce the problem, restrict the available SPI range in
charon.conf : spi_min = 0x10000000 spi_max = 0x10000002
This limits the system to only 2 usable SPI values.
Next, create more than 2 Child SA. each using unique pair of src/dst address.
As soon as the 3rd Child SA is initiated, it will be assigned a duplicate
SPI, since the SPI pool is already exhausted.
With a narrow SPI range, the issue is consistently reproducible.
With a broader/default range, it becomes rare and unpredictable.
Current implementation:
xfrm_spi_hash() lookup function computes hash using daddr, proto, and family.
So if two SAs have the same SPI but different destination addresses, then
they will:
a. Hash into different buckets
b. Be stored in different linked lists (byspi + h)
c. Not be seen in the same hlist_for_each_entry_rcu() iteration.
As a result, the lookup will result in NULL and kernel allows that Duplicate SPI
Proposed Change:
xfrm_state_lookup_spi_proto() does a truly global search - across all states,
regardless of hash bucket and matches SPI and proto. |
| In the Linux kernel, the following vulnerability has been resolved:
lib/crypto: arm/poly1305: Fix register corruption in no-SIMD contexts
Restore the SIMD usability check that was removed by commit 773426f4771b
("crypto: arm/poly1305 - Add block-only interface").
This safety check is cheap and is well worth eliminating a footgun.
While the Poly1305 functions should not be called when SIMD registers
are unusable, if they are anyway, they should just do the right thing
instead of corrupting random tasks' registers and/or computing incorrect
MACs. Fixing this is also needed for poly1305_kunit to pass.
Just use may_use_simd() instead of the original crypto_simd_usable(),
since poly1305_kunit won't rely on crypto_simd_disabled_for_test. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: Remove WARN_ON_ONCE() call from ufshcd_uic_cmd_compl()
The UIC completion interrupt may be disabled while an UIC command is
being processed. When the UIC completion interrupt is reenabled, an UIC
interrupt is triggered and the WARN_ON_ONCE(!cmd) statement is hit.
Hence this patch that removes this kernel warning. |
| In the Linux kernel, the following vulnerability has been resolved:
lib/crypto: arm64/poly1305: Fix register corruption in no-SIMD contexts
Restore the SIMD usability check that was removed by commit a59e5468a921
("crypto: arm64/poly1305 - Add block-only interface").
This safety check is cheap and is well worth eliminating a footgun.
While the Poly1305 functions should not be called when SIMD registers
are unusable, if they are anyway, they should just do the right thing
instead of corrupting random tasks' registers and/or computing incorrect
MACs. Fixing this is also needed for poly1305_kunit to pass.
Just use may_use_simd() instead of the original crypto_simd_usable(),
since poly1305_kunit won't rely on crypto_simd_disabled_for_test. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/af_unix: defer registered files gc to io_uring release
Instead of putting io_uring's registered files in unix_gc() we want it
to be done by io_uring itself. The trick here is to consider io_uring
registered files for cycle detection but not actually putting them down.
Because io_uring can't register other ring instances, this will remove
all refs to the ring file triggering the ->release path and clean up
with io_ring_ctx_free().
[axboe: add kerneldoc comment to skb, fold in skb leak fix] |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Protect against send buffer overflow in NFSv2 READDIR
Restore the previous limit on the @count argument to prevent a
buffer overflow attack. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: Fix crash on isr after kexec()
If the system is rebooted via isr(), the IRQ handler might
be triggered before the domain is initialized. Resulting on
an invalid memory access error.
Fix:
[ 0.500930] Unable to handle kernel read from unreadable memory at virtual address 0000000000000070
[ 0.501166] Call trace:
[ 0.501174] report_iommu_fault+0x28/0xfc
[ 0.501180] mtk_iommu_isr+0x10c/0x1c0
[ joro: Fixed spelling in commit message ] |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: qcom: fix writes in read-only memory region
This commit fixes a kernel oops because of a write in some read-only memory:
[ 9.068287] Unable to handle kernel write to read-only memory at virtual address ffff800009240ad8
..snip..
[ 9.138790] Internal error: Oops: 9600004f [#1] PREEMPT SMP
..snip..
[ 9.269161] Call trace:
[ 9.276271] __memcpy+0x5c/0x230
[ 9.278531] snprintf+0x58/0x80
[ 9.282002] qcom_cpufreq_msm8939_name_version+0xb4/0x190
[ 9.284869] qcom_cpufreq_probe+0xc8/0x39c
..snip..
The following line defines a pointer that point to a char buffer stored
in read-only memory:
char *pvs_name = "speedXX-pvsXX-vXX";
This pointer is meant to hold a template "speedXX-pvsXX-vXX" where the
XX values get overridden by the qcom_cpufreq_krait_name_version function. Since
the template is actually stored in read-only memory, when the function
executes the following call we get an oops:
snprintf(*pvs_name, sizeof("speedXX-pvsXX-vXX"), "speed%d-pvs%d-v%d",
speed, pvs, pvs_ver);
To fix this issue, we instead store the template name onto the stack by
using the following syntax:
char pvs_name_buffer[] = "speedXX-pvsXX-vXX";
Because the `pvs_name` needs to be able to be assigned to NULL, the
template buffer is stored in the pvs_name_buffer and not under the
pvs_name variable. |
| In the Linux kernel, the following vulnerability has been resolved:
android: binder: stop saving a pointer to the VMA
Do not record a pointer to a VMA outside of the mmap_lock for later use.
This is unsafe and there are a number of failure paths *after* the
recorded VMA pointer may be freed during setup. There is no callback to
the driver to clear the saved pointer from generic mm code. Furthermore,
the VMA pointer may become stale if any number of VMA operations end up
freeing the VMA so saving it was fragile to being with.
Instead, change the binder_alloc struct to record the start address of the
VMA and use vma_lookup() to get the vma when needed. Add lockdep
mmap_lock checks on updates to the vma pointer to ensure the lock is held
and depend on that lock for synchronization of readers and writers - which
was already the case anyways, so the smp_wmb()/smp_rmb() was not
necessary.
[akpm@linux-foundation.org: fix drivers/android/binder_alloc_selftest.c] |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: fix crash in set_mesh_sync and set_mesh_complete
There is a BUG: KASAN: stack-out-of-bounds in set_mesh_sync due to
memcpy from badly declared on-stack flexible array.
Another crash is in set_mesh_complete() due to double list_del via
mgmt_pending_valid + mgmt_pending_remove.
Use DEFINE_FLEX to declare the flexible array right, and don't memcpy
outside bounds.
As mgmt_pending_valid removes the cmd from list, use mgmt_pending_free,
and also report status on error. |
| IBM Concert 1.0.0 through 2.0.0 could allow a remote attacker to obtain sensitive information, caused by the failure to properly enable HTTP Strict-Transport-Security. An attacker could exploit this vulnerability to obtain sensitive information using man in the middle techniques. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix refcount leak in nfsd_set_fh_dentry()
nfsd exports a "pseudo root filesystem" which is used by NFSv4 to find
the various exported filesystems using LOOKUP requests from a known root
filehandle. NFSv3 uses the MOUNT protocol to find those exported
filesystems and so is not given access to the pseudo root filesystem.
If a v3 (or v2) client uses a filehandle from that filesystem,
nfsd_set_fh_dentry() will report an error, but still stores the export
in "struct svc_fh" even though it also drops the reference (exp_put()).
This means that when fh_put() is called an extra reference will be dropped
which can lead to use-after-free and possible denial of service.
Normal NFS usage will not provide a pseudo-root filehandle to a v3
client. This bug can only be triggered by the client synthesising an
incorrect filehandle.
To fix this we move the assignments to the svc_fh later, after all
possible error cases have been detected. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: video: Fix use-after-free in acpi_video_switch_brightness()
The switch_brightness_work delayed work accesses device->brightness
and device->backlight, freed by acpi_video_dev_unregister_backlight()
during device removal.
If the work executes after acpi_video_bus_unregister_backlight()
frees these resources, it causes a use-after-free when
acpi_video_switch_brightness() dereferences device->brightness or
device->backlight.
Fix this by calling cancel_delayed_work_sync() for each device's
switch_brightness_work in acpi_video_bus_remove_notify_handler()
after removing the notify handler that queues the work. This ensures
the work completes before the memory is freed.
[ rjw: Changelog edit ] |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: Fix missing pointer check in hda_component_manager_init function
The __component_match_add function may assign the 'matchptr' pointer
the value ERR_PTR(-ENOMEM), which will subsequently be dereferenced.
The call stack leading to the error looks like this:
hda_component_manager_init
|-> component_match_add
|-> component_match_add_release
|-> __component_match_add ( ... ,**matchptr, ... )
|-> *matchptr = ERR_PTR(-ENOMEM); // assign
|-> component_master_add_with_match( ... match)
|-> component_match_realloc(match, match->num); // dereference
Add IS_ERR() check to prevent the crash.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid overflow while left shift operation
Should cast type of folio->index from pgoff_t to loff_t to avoid overflow
while left shift operation. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Fix possible UAFs
This attemps to fix possible UAFs caused by struct mgmt_pending being
freed while still being processed like in the following trace, in order
to fix mgmt_pending_valid is introduce and use to check if the
mgmt_pending hasn't been removed from the pending list, on the complete
callbacks it is used to check and in addtion remove the cmd from the list
while holding mgmt_pending_lock to avoid TOCTOU problems since if the cmd
is left on the list it can still be accessed and freed.
BUG: KASAN: slab-use-after-free in mgmt_add_adv_patterns_monitor_sync+0x35/0x50 net/bluetooth/mgmt.c:5223
Read of size 8 at addr ffff8880709d4dc0 by task kworker/u11:0/55
CPU: 0 UID: 0 PID: 55 Comm: kworker/u11:0 Not tainted 6.16.4 #2 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
Workqueue: hci0 hci_cmd_sync_work
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x240 mm/kasan/report.c:482
kasan_report+0x118/0x150 mm/kasan/report.c:595
mgmt_add_adv_patterns_monitor_sync+0x35/0x50 net/bluetooth/mgmt.c:5223
hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332
process_one_work kernel/workqueue.c:3238 [inline]
process_scheduled_works+0xade/0x17b0 kernel/workqueue.c:3321
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
kthread+0x711/0x8a0 kernel/kthread.c:464
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16.4/arch/x86/entry/entry_64.S:245
</TASK>
Allocated by task 12210:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4364
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1039 [inline]
mgmt_pending_new+0x65/0x1e0 net/bluetooth/mgmt_util.c:269
mgmt_pending_add+0x35/0x140 net/bluetooth/mgmt_util.c:296
__add_adv_patterns_monitor+0x130/0x200 net/bluetooth/mgmt.c:5247
add_adv_patterns_monitor+0x214/0x360 net/bluetooth/mgmt.c:5364
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:714 [inline]
__sock_sendmsg+0x219/0x270 net/socket.c:729
sock_write_iter+0x258/0x330 net/socket.c:1133
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x5c9/0xb30 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 12221:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x62/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2381 [inline]
slab_free mm/slub.c:4648 [inline]
kfree+0x18e/0x440 mm/slub.c:4847
mgmt_pending_free net/bluetooth/mgmt_util.c:311 [inline]
mgmt_pending_foreach+0x30d/0x380 net/bluetooth/mgmt_util.c:257
__mgmt_power_off+0x169/0x350 net/bluetooth/mgmt.c:9444
hci_dev_close_sync+0x754/0x1330 net/bluetooth/hci_sync.c:5290
hci_dev_do_close net/bluetooth/hci_core.c:501 [inline]
hci_dev_close+0x108/0x200 net/bluetooth/hci_core.c:526
sock_do_ioctl+0xd9/0x300 net/socket.c:1192
sock_ioctl+0x576/0x790 net/socket.c:1313
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xf9/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xf
---truncated--- |