CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
bcachefs: kvfree bch_fs::snapshots in bch2_fs_snapshots_exit
bch_fs::snapshots is allocated by kvzalloc in __snapshot_t_mut.
It should be freed by kvfree not kfree.
Or umount will triger:
[ 406.829178 ] BUG: unable to handle page fault for address: ffffe7b487148008
[ 406.830676 ] #PF: supervisor read access in kernel mode
[ 406.831643 ] #PF: error_code(0x0000) - not-present page
[ 406.832487 ] PGD 0 P4D 0
[ 406.832898 ] Oops: 0000 [#1] PREEMPT SMP PTI
[ 406.833512 ] CPU: 2 PID: 1754 Comm: umount Kdump: loaded Tainted: G OE 6.7.0-rc7-custom+ #90
[ 406.834746 ] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
[ 406.835796 ] RIP: 0010:kfree+0x62/0x140
[ 406.836197 ] Code: 80 48 01 d8 0f 82 e9 00 00 00 48 c7 c2 00 00 00 80 48 2b 15 78 9f 1f 01 48 01 d0 48 c1 e8 0c 48 c1 e0 06 48 03 05 56 9f 1f 01 <48> 8b 50 08 48 89 c7 f6 c2 01 0f 85 b0 00 00 00 66 90 48 8b 07 f6
[ 406.837810 ] RSP: 0018:ffffb9d641607e48 EFLAGS: 00010286
[ 406.838213 ] RAX: ffffe7b487148000 RBX: ffffb9d645200000 RCX: ffffb9d641607dc4
[ 406.838738 ] RDX: 000065bb00000000 RSI: ffffffffc0d88b84 RDI: ffffb9d645200000
[ 406.839217 ] RBP: ffff9a4625d00068 R08: 0000000000000001 R09: 0000000000000001
[ 406.839650 ] R10: 0000000000000001 R11: 000000000000001f R12: ffff9a4625d4da80
[ 406.840055 ] R13: ffff9a4625d00000 R14: ffffffffc0e2eb20 R15: 0000000000000000
[ 406.840451 ] FS: 00007f0a264ffb80(0000) GS:ffff9a4e2d500000(0000) knlGS:0000000000000000
[ 406.840851 ] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 406.841125 ] CR2: ffffe7b487148008 CR3: 000000018c4d2000 CR4: 00000000000006f0
[ 406.841464 ] Call Trace:
[ 406.841583 ] <TASK>
[ 406.841682 ] ? __die+0x1f/0x70
[ 406.841828 ] ? page_fault_oops+0x159/0x470
[ 406.842014 ] ? fixup_exception+0x22/0x310
[ 406.842198 ] ? exc_page_fault+0x1ed/0x200
[ 406.842382 ] ? asm_exc_page_fault+0x22/0x30
[ 406.842574 ] ? bch2_fs_release+0x54/0x280 [bcachefs]
[ 406.842842 ] ? kfree+0x62/0x140
[ 406.842988 ] ? kfree+0x104/0x140
[ 406.843138 ] bch2_fs_release+0x54/0x280 [bcachefs]
[ 406.843390 ] kobject_put+0xb7/0x170
[ 406.843552 ] deactivate_locked_super+0x2f/0xa0
[ 406.843756 ] cleanup_mnt+0xba/0x150
[ 406.843917 ] task_work_run+0x59/0xa0
[ 406.844083 ] exit_to_user_mode_prepare+0x197/0x1a0
[ 406.844302 ] syscall_exit_to_user_mode+0x16/0x40
[ 406.844510 ] do_syscall_64+0x4e/0xf0
[ 406.844675 ] entry_SYSCALL_64_after_hwframe+0x6e/0x76
[ 406.844907 ] RIP: 0033:0x7f0a2664e4fb |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: bridge: replace physindev with physinif in nf_bridge_info
An skb can be added to a neigh->arp_queue while waiting for an arp
reply. Where original skb's skb->dev can be different to neigh's
neigh->dev. For instance in case of bridging dnated skb from one veth to
another, the skb would be added to a neigh->arp_queue of the bridge.
As skb->dev can be reset back to nf_bridge->physindev and used, and as
there is no explicit mechanism that prevents this physindev from been
freed under us (for instance neigh_flush_dev doesn't cleanup skbs from
different device's neigh queue) we can crash on e.g. this stack:
arp_process
neigh_update
skb = __skb_dequeue(&neigh->arp_queue)
neigh_resolve_output(..., skb)
...
br_nf_dev_xmit
br_nf_pre_routing_finish_bridge_slow
skb->dev = nf_bridge->physindev
br_handle_frame_finish
Let's use plain ifindex instead of net_device link. To peek into the
original net_device we will use dev_get_by_index_rcu(). Thus either we
get device and are safe to use it or we don't get it and drop skb. |
In the Linux kernel, the following vulnerability has been resolved:
mptcp: use OPTION_MPTCP_MPJ_SYNACK in subflow_finish_connect()
subflow_finish_connect() uses four fields (backup, join_id, thmac, none)
that may contain garbage unless OPTION_MPTCP_MPJ_SYNACK has been set
in mptcp_parse_option() |
In the Linux kernel, the following vulnerability has been resolved:
dma-direct: Leak pages on dma_set_decrypted() failure
On TDX it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
DMA could free decrypted/shared pages if dma_set_decrypted() fails. This
should be a rare case. Just leak the pages in this case instead of
freeing them. |
Vasion Print (formerly PrinterLogic) Virtual Appliance Host versions prior to 1.0.735 and Application prior to 20.0.1330 (macOS/Linux client deployments) contain a vulnerability in the local logging mechanism. Authentication session tokens, including PHPSESSID, XSRF-TOKEN, and laravel_session, are stored in cleartext within world-readable log files. Any local user with access to the machine can extract these session tokens and use them to authenticate remotely to the SaaS environment, bypassing normal login credentials, potentially leading to unauthorized system access and exposure of sensitive information. |
In the Linux kernel, the following vulnerability has been resolved:
serial: core: fix transmit-buffer reset and memleak
Commit 761ed4a94582 ("tty: serial_core: convert uart_close to use
tty_port_close") converted serial core to use tty_port_close() but
failed to notice that the transmit buffer still needs to be freed on
final close.
Not freeing the transmit buffer means that the buffer is no longer
cleared on next open so that any ioctl() waiting for the buffer to drain
might wait indefinitely (e.g. on termios changes) or that stale data can
end up being transmitted in case tx is restarted.
Furthermore, the buffer of any port that has been opened would leak on
driver unbind.
Note that the port lock is held when clearing the buffer pointer due to
the ldisc race worked around by commit a5ba1d95e46e ("uart: fix race
between uart_put_char() and uart_shutdown()").
Also note that the tty-port shutdown() callback is not called for
console ports so it is not strictly necessary to free the buffer page
after releasing the lock (cf. d72402145ace ("tty/serial: do not free
trasnmit buffer page under port lock")). |
Vasion Print (formerly PrinterLogic) Virtual Appliance Host versions prior to 22.0.893 and Application versions prior to 20.0.2140 (macOS/Linux client deployments) are built against OpenSSL 1.0.2h-fips (released May 2016), which has been end-of-life since 2019 and is no longer supported by the OpenSSL project. Continued use of this outdated cryptographic library exposes deployments to known vulnerabilities that are no longer patched, weakening the overall security posture. Affected daemons may emit deprecation warnings and rely on cryptographic components with unresolved security flaws, potentially enabling attackers to exploit weaknesses in TLS/SSL processing or cryptographic operations. |
In the Linux kernel, the following vulnerability has been resolved:
serial: liteuart: fix minor-number leak on probe errors
Make sure to release the allocated minor number before returning on
probe errors. |
In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Fix leak of rcvhdrtail_dummy_kvaddr
This buffer is currently allocated in hfi1_init():
if (reinit)
ret = init_after_reset(dd);
else
ret = loadtime_init(dd);
if (ret)
goto done;
/* allocate dummy tail memory for all receive contexts */
dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
sizeof(u64),
&dd->rcvhdrtail_dummy_dma,
GFP_KERNEL);
if (!dd->rcvhdrtail_dummy_kvaddr) {
dd_dev_err(dd, "cannot allocate dummy tail memory\n");
ret = -ENOMEM;
goto done;
}
The reinit triggered path will overwrite the old allocation and leak it.
Fix by moving the allocation to hfi1_alloc_devdata() and the deallocation
to hfi1_free_devdata(). |
In the Linux kernel, the following vulnerability has been resolved:
seg6: fix the iif in the IPv6 socket control block
When an IPv4 packet is received, the ip_rcv_core(...) sets the receiving
interface index into the IPv4 socket control block (v5.16-rc4,
net/ipv4/ip_input.c line 510):
IPCB(skb)->iif = skb->skb_iif;
If that IPv4 packet is meant to be encapsulated in an outer IPv6+SRH
header, the seg6_do_srh_encap(...) performs the required encapsulation.
In this case, the seg6_do_srh_encap function clears the IPv6 socket control
block (v5.16-rc4 net/ipv6/seg6_iptunnel.c line 163):
memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
The memset(...) was introduced in commit ef489749aae5 ("ipv6: sr: clear
IP6CB(skb) on SRH ip4ip6 encapsulation") a long time ago (2019-01-29).
Since the IPv6 socket control block and the IPv4 socket control block share
the same memory area (skb->cb), the receiving interface index info is lost
(IP6CB(skb)->iif is set to zero).
As a side effect, that condition triggers a NULL pointer dereference if
commit 0857d6f8c759 ("ipv6: When forwarding count rx stats on the orig
netdev") is applied.
To fix that issue, we set the IP6CB(skb)->iif with the index of the
receiving interface once again. |
In the Linux kernel, the following vulnerability has been resolved:
drm/dp_mst: Fix MST sideband message body length check
Fix the MST sideband message body length check, which must be at least 1
byte accounting for the message body CRC (aka message data CRC) at the
end of the message.
This fixes a case where an MST branch device returns a header with a
correct header CRC (indicating a correctly received body length), with
the body length being incorrectly set to 0. This will later lead to a
memory corruption in drm_dp_sideband_append_payload() and the following
errors in dmesg:
UBSAN: array-index-out-of-bounds in drivers/gpu/drm/display/drm_dp_mst_topology.c:786:25
index -1 is out of range for type 'u8 [48]'
Call Trace:
drm_dp_sideband_append_payload+0x33d/0x350 [drm_display_helper]
drm_dp_get_one_sb_msg+0x3ce/0x5f0 [drm_display_helper]
drm_dp_mst_hpd_irq_handle_event+0xc8/0x1580 [drm_display_helper]
memcpy: detected field-spanning write (size 18446744073709551615) of single field "&msg->msg[msg->curlen]" at drivers/gpu/drm/display/drm_dp_mst_topology.c:791 (size 256)
Call Trace:
drm_dp_sideband_append_payload+0x324/0x350 [drm_display_helper]
drm_dp_get_one_sb_msg+0x3ce/0x5f0 [drm_display_helper]
drm_dp_mst_hpd_irq_handle_event+0xc8/0x1580 [drm_display_helper] |
Vasion Print (formerly PrinterLogic) Virtual Appliance Host versions prior to 22.0.843 and Application prior to 20.0.1923 (macOS/Linux client deployments) contain an arbitrary file write vulnerability via the response file handling. When tasks produce output the service writes response data into files under /opt/PrinterInstallerClient/tmp/responses/ reusing the requested filename. The service follows symbolic links in the responses directory and writes as the service user (typically root), allowing a local, unprivileged user to cause the service to overwrite or create arbitrary files on the filesystem as root. This can be used to modify configuration files, replace or inject binaries or drivers, and otherwise achieve local privilege escalation and full system compromise. |
Vasion Print (formerly PrinterLogic) Virtual Appliance Host and Application (macOS/Linux client deployments) are vulnerable to an authentication bypass in PrinterInstallerClientService. The service requires root privileges for certain administrative operations, but these checks rely on calls to geteuid(). By preloading a malicious shared object overriding geteuid(), a local attacker can trick the service into believing it is running with root privileges. This bypass enables execution of administrative commands (e.g., enabling debug mode, managing configurations, or invoking privileged features) without proper authorization. While some actions requiring write access to protected files may still fail, the flaw effectively breaks the intended security model of the inter-process communication (IPC) system, allowing local attackers to escalate privileges and compromise system integrity. NOTE: This vulnerability has been addressed, but an affected version range is not yet fully determined. We will update this record as soon as the vendor provides confirmed version information. |
Vasion Print (formerly PrinterLogic) Virtual Appliance Host versions prior to 1.0.735 and Application versions prior to 20.0.1330 (macOS/Linux client deployments) contain a vulnerability in the local inter-process communication (IPC) mechanism. The software stores IPC request and response files inside /opt/PrinterInstallerClient/tmp with world-readable and world-writable permissions. Any local user can craft malicious request files that are processed by privileged daemons, leading to unauthorized actions being executed in other user sessions. This breaks user session isolation, potentially allowing local attackers to hijack sessions, perform unintended actions in the context of other users, and impact system integrity and availability. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: free exchange changeset on failures
Fstests runs on my VMs have show several kmemleak reports like the following.
unreferenced object 0xffff88811ae59080 (size 64):
comm "xfs_io", pid 12124, jiffies 4294987392 (age 6.368s)
hex dump (first 32 bytes):
00 c0 1c 00 00 00 00 00 ff cf 1c 00 00 00 00 00 ................
90 97 e5 1a 81 88 ff ff 90 97 e5 1a 81 88 ff ff ................
backtrace:
[<00000000ac0176d2>] ulist_add_merge+0x60/0x150 [btrfs]
[<0000000076e9f312>] set_state_bits+0x86/0xc0 [btrfs]
[<0000000014fe73d6>] set_extent_bit+0x270/0x690 [btrfs]
[<000000004f675208>] set_record_extent_bits+0x19/0x20 [btrfs]
[<00000000b96137b1>] qgroup_reserve_data+0x274/0x310 [btrfs]
[<0000000057e9dcbb>] btrfs_check_data_free_space+0x5c/0xa0 [btrfs]
[<0000000019c4511d>] btrfs_delalloc_reserve_space+0x1b/0xa0 [btrfs]
[<000000006d37e007>] btrfs_dio_iomap_begin+0x415/0x970 [btrfs]
[<00000000fb8a74b8>] iomap_iter+0x161/0x1e0
[<0000000071dff6ff>] __iomap_dio_rw+0x1df/0x700
[<000000002567ba53>] iomap_dio_rw+0x5/0x20
[<0000000072e555f8>] btrfs_file_write_iter+0x290/0x530 [btrfs]
[<000000005eb3d845>] new_sync_write+0x106/0x180
[<000000003fb505bf>] vfs_write+0x24d/0x2f0
[<000000009bb57d37>] __x64_sys_pwrite64+0x69/0xa0
[<000000003eba3fdf>] do_syscall_64+0x43/0x90
In case brtfs_qgroup_reserve_data() or btrfs_delalloc_reserve_metadata()
fail the allocated extent_changeset will not be freed.
So in btrfs_check_data_free_space() and btrfs_delalloc_reserve_space()
free the allocated extent_changeset to get rid of the allocated memory.
The issue currently only happens in the direct IO write path, but only
after 65b3c08606e5 ("btrfs: fix ENOSPC failure when attempting direct IO
write into NOCOW range"), and also at defrag_one_locked_target(). Every
other place is always calling extent_changeset_free() even if its call
to btrfs_delalloc_reserve_space() or btrfs_check_data_free_space() has
failed. |
In the Linux kernel, the following vulnerability has been resolved:
nfsd: Fix nsfd startup race (again)
Commit bd5ae9288d64 ("nfsd: register pernet ops last, unregister first")
has re-opened rpc_pipefs_event() race against nfsd_net_id registration
(register_pernet_subsys()) which has been fixed by commit bb7ffbf29e76
("nfsd: fix nsfd startup race triggering BUG_ON").
Restore the order of register_pernet_subsys() vs register_cld_notifier().
Add WARN_ON() to prevent a future regression.
Crash info:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000012
CPU: 8 PID: 345 Comm: mount Not tainted 5.4.144-... #1
pc : rpc_pipefs_event+0x54/0x120 [nfsd]
lr : rpc_pipefs_event+0x48/0x120 [nfsd]
Call trace:
rpc_pipefs_event+0x54/0x120 [nfsd]
blocking_notifier_call_chain
rpc_fill_super
get_tree_keyed
rpc_fs_get_tree
vfs_get_tree
do_mount
ksys_mount
__arm64_sys_mount
el0_svc_handler
el0_svc |
In the Linux kernel, the following vulnerability has been resolved:
nvmem: Fix shift-out-of-bound (UBSAN) with byte size cells
If a cell has 'nbits' equal to a multiple of BITS_PER_BYTE the logic
*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
will become undefined behavior because nbits modulo BITS_PER_BYTE is 0, and we
subtract one from that making a large number that is then shifted more than the
number of bits that fit into an unsigned long.
UBSAN reports this problem:
UBSAN: shift-out-of-bounds in drivers/nvmem/core.c:1386:8
shift exponent 64 is too large for 64-bit type 'unsigned long'
CPU: 6 PID: 7 Comm: kworker/u16:0 Not tainted 5.15.0-rc3+ #9
Hardware name: Google Lazor (rev3+) with KB Backlight (DT)
Workqueue: events_unbound deferred_probe_work_func
Call trace:
dump_backtrace+0x0/0x170
show_stack+0x24/0x30
dump_stack_lvl+0x64/0x7c
dump_stack+0x18/0x38
ubsan_epilogue+0x10/0x54
__ubsan_handle_shift_out_of_bounds+0x180/0x194
__nvmem_cell_read+0x1ec/0x21c
nvmem_cell_read+0x58/0x94
nvmem_cell_read_variable_common+0x4c/0xb0
nvmem_cell_read_variable_le_u32+0x40/0x100
a6xx_gpu_init+0x170/0x2f4
adreno_bind+0x174/0x284
component_bind_all+0xf0/0x264
msm_drm_bind+0x1d8/0x7a0
try_to_bring_up_master+0x164/0x1ac
__component_add+0xbc/0x13c
component_add+0x20/0x2c
dp_display_probe+0x340/0x384
platform_probe+0xc0/0x100
really_probe+0x110/0x304
__driver_probe_device+0xb8/0x120
driver_probe_device+0x4c/0xfc
__device_attach_driver+0xb0/0x128
bus_for_each_drv+0x90/0xdc
__device_attach+0xc8/0x174
device_initial_probe+0x20/0x2c
bus_probe_device+0x40/0xa4
deferred_probe_work_func+0x7c/0xb8
process_one_work+0x128/0x21c
process_scheduled_works+0x40/0x54
worker_thread+0x1ec/0x2a8
kthread+0x138/0x158
ret_from_fork+0x10/0x20
Fix it by making sure there are any bits to mask out. |
In the Linux kernel, the following vulnerability has been resolved:
net/tls: Fix flipped sign in tls_err_abort() calls
sk->sk_err appears to expect a positive value, a convention that ktls
doesn't always follow and that leads to memory corruption in other code.
For instance,
[kworker]
tls_encrypt_done(..., err=<negative error from crypto request>)
tls_err_abort(.., err)
sk->sk_err = err;
[task]
splice_from_pipe_feed
...
tls_sw_do_sendpage
if (sk->sk_err) {
ret = -sk->sk_err; // ret is positive
splice_from_pipe_feed (continued)
ret = actor(...) // ret is still positive and interpreted as bytes
// written, resulting in underflow of buf->len and
// sd->len, leading to huge buf->offset and bogus
// addresses computed in later calls to actor()
Fix all tls_err_abort() callers to pass a negative error code
consistently and centralize the error-prone sign flip there, throwing in
a warning to catch future misuse and uninlining the function so it
really does only warn once. |
In the Linux kernel, the following vulnerability has been resolved:
cfg80211: fix management registrations locking
The management registrations locking was broken, the list was
locked for each wdev, but cfg80211_mgmt_registrations_update()
iterated it without holding all the correct spinlocks, causing
list corruption.
Rather than trying to fix it with fine-grained locking, just
move the lock to the wiphy/rdev (still need the list on each
wdev), we already need to hold the wdev lock to change it, so
there's no contention on the lock in any case. This trivially
fixes the bug since we hold one wdev's lock already, and now
will hold the lock that protects all lists. |
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix race between searching chunks and release journal_head from buffer_head
Encountered a race between ocfs2_test_bg_bit_allocatable() and
jbd2_journal_put_journal_head() resulting in the below vmcore.
PID: 106879 TASK: ffff880244ba9c00 CPU: 2 COMMAND: "loop3"
Call trace:
panic
oops_end
no_context
__bad_area_nosemaphore
bad_area_nosemaphore
__do_page_fault
do_page_fault
page_fault
[exception RIP: ocfs2_block_group_find_clear_bits+316]
ocfs2_block_group_find_clear_bits [ocfs2]
ocfs2_cluster_group_search [ocfs2]
ocfs2_search_chain [ocfs2]
ocfs2_claim_suballoc_bits [ocfs2]
__ocfs2_claim_clusters [ocfs2]
ocfs2_claim_clusters [ocfs2]
ocfs2_local_alloc_slide_window [ocfs2]
ocfs2_reserve_local_alloc_bits [ocfs2]
ocfs2_reserve_clusters_with_limit [ocfs2]
ocfs2_reserve_clusters [ocfs2]
ocfs2_lock_refcount_allocators [ocfs2]
ocfs2_make_clusters_writable [ocfs2]
ocfs2_replace_cow [ocfs2]
ocfs2_refcount_cow [ocfs2]
ocfs2_file_write_iter [ocfs2]
lo_rw_aio
loop_queue_work
kthread_worker_fn
kthread
ret_from_fork
When ocfs2_test_bg_bit_allocatable() called bh2jh(bg_bh), the
bg_bh->b_private NULL as jbd2_journal_put_journal_head() raced and
released the jounal head from the buffer head. Needed to take bit lock
for the bit 'BH_JournalHead' to fix this race. |