| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Disable works on hci_unregister_dev
This make use of disable_work_* on hci_unregister_dev since the hci_dev is
about to be freed new submissions are not disarable. |
| In the Linux kernel, the following vulnerability has been resolved:
ptp: ocp: fix use-after-free bugs causing by ptp_ocp_watchdog
The ptp_ocp_detach() only shuts down the watchdog timer if it is
pending. However, if the timer handler is already running, the
timer_delete_sync() is not called. This leads to race conditions
where the devlink that contains the ptp_ocp is deallocated while
the timer handler is still accessing it, resulting in use-after-free
bugs. The following details one of the race scenarios.
(thread 1) | (thread 2)
ptp_ocp_remove() |
ptp_ocp_detach() | ptp_ocp_watchdog()
if (timer_pending(&bp->watchdog))| bp = timer_container_of()
timer_delete_sync() |
|
devlink_free(devlink) //free |
| bp-> //use
Resolve this by unconditionally calling timer_delete_sync() to ensure
the timer is reliably deactivated, preventing any access after free. |
| In the Linux kernel, the following vulnerability has been resolved:
eth: mlx4: Fix IS_ERR() vs NULL check bug in mlx4_en_create_rx_ring
Replace NULL check with IS_ERR() check after calling page_pool_create()
since this function returns error pointers (ERR_PTR).
Using NULL check could lead to invalid pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix NULL access of tx->in_use in ice_ptp_ts_irq
The E810 device has support for a "low latency" firmware interface to
access and read the Tx timestamps. This interface does not use the standard
Tx timestamp logic, due to the latency overhead of proxying sideband
command requests over the firmware AdminQ.
The logic still makes use of the Tx timestamp tracking structure,
ice_ptp_tx, as it uses the same "ready" bitmap to track which Tx
timestamps complete.
Unfortunately, the ice_ptp_ts_irq() function does not check if the tracker
is initialized before its first access. This results in NULL dereference or
use-after-free bugs similar to the following:
[245977.278756] BUG: kernel NULL pointer dereference, address: 0000000000000000
[245977.278774] RIP: 0010:_find_first_bit+0x19/0x40
[245977.278796] Call Trace:
[245977.278809] ? ice_misc_intr+0x364/0x380 [ice]
This can occur if a Tx timestamp interrupt races with the driver reset
logic.
Fix this by only checking the in_use bitmap (and other fields) if the
tracker is marked as initialized. The reset flow will clear the init field
under lock before it tears the tracker down, thus preventing any
use-after-free or NULL access. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix NULL access of tx->in_use in ice_ll_ts_intr
Recent versions of the E810 firmware have support for an extra interrupt to
handle report of the "low latency" Tx timestamps coming from the
specialized low latency firmware interface. Instead of polling the
registers, software can wait until the low latency interrupt is fired.
This logic makes use of the Tx timestamp tracking structure, ice_ptp_tx, as
it uses the same "ready" bitmap to track which Tx timestamps complete.
Unfortunately, the ice_ll_ts_intr() function does not check if the
tracker is initialized before its first access. This results in NULL
dereference or use-after-free bugs similar to the issues fixed in the
ice_ptp_ts_irq() function.
Fix this by only checking the in_use bitmap (and other fields) if the
tracker is marked as initialized. The reset flow will clear the init field
under lock before it tears the tracker down, thus preventing any
use-after-free or NULL access. |
| In the Linux kernel, the following vulnerability has been resolved:
vxlan: Fix NPD when refreshing an FDB entry with a nexthop object
VXLAN FDB entries can point to either a remote destination or an FDB
nexthop group. The latter is usually used in EVPN deployments where
learning is disabled.
However, when learning is enabled, an incoming packet might try to
refresh an FDB entry that points to an FDB nexthop group and therefore
does not have a remote. Such packets should be dropped, but they are
only dropped after dereferencing the non-existent remote, resulting in a
NPD [1] which can be reproduced using [2].
Fix by dropping such packets earlier. Remove the misleading comment from
first_remote_rcu().
[1]
BUG: kernel NULL pointer dereference, address: 0000000000000000
[...]
CPU: 13 UID: 0 PID: 361 Comm: mausezahn Not tainted 6.17.0-rc1-virtme-g9f6b606b6b37 #1 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc41 04/01/2014
RIP: 0010:vxlan_snoop+0x98/0x1e0
[...]
Call Trace:
<TASK>
vxlan_encap_bypass+0x209/0x240
encap_bypass_if_local+0xb1/0x100
vxlan_xmit_one+0x1375/0x17e0
vxlan_xmit+0x6b4/0x15f0
dev_hard_start_xmit+0x5d/0x1c0
__dev_queue_xmit+0x246/0xfd0
packet_sendmsg+0x113a/0x1850
__sock_sendmsg+0x38/0x70
__sys_sendto+0x126/0x180
__x64_sys_sendto+0x24/0x30
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x4b/0x53
[2]
#!/bin/bash
ip address add 192.0.2.1/32 dev lo
ip address add 192.0.2.2/32 dev lo
ip nexthop add id 1 via 192.0.2.3 fdb
ip nexthop add id 10 group 1 fdb
ip link add name vx0 up type vxlan id 10010 local 192.0.2.1 dstport 12345 localbypass
ip link add name vx1 up type vxlan id 10020 local 192.0.2.2 dstport 54321 learning
bridge fdb add 00:11:22:33:44:55 dev vx0 self static dst 192.0.2.2 port 54321 vni 10020
bridge fdb add 00:aa:bb:cc:dd:ee dev vx1 self static nhid 10
mausezahn vx0 -a 00:aa:bb:cc:dd:ee -b 00:11:22:33:44:55 -c 1 -q |
| In the Linux kernel, the following vulnerability has been resolved:
vxlan: Fix NPD in {arp,neigh}_reduce() when using nexthop objects
When the "proxy" option is enabled on a VXLAN device, the device will
suppress ARP requests and IPv6 Neighbor Solicitation messages if it is
able to reply on behalf of the remote host. That is, if a matching and
valid neighbor entry is configured on the VXLAN device whose MAC address
is not behind the "any" remote (0.0.0.0 / ::).
The code currently assumes that the FDB entry for the neighbor's MAC
address points to a valid remote destination, but this is incorrect if
the entry is associated with an FDB nexthop group. This can result in a
NPD [1][3] which can be reproduced using [2][4].
Fix by checking that the remote destination exists before dereferencing
it.
[1]
BUG: kernel NULL pointer dereference, address: 0000000000000000
[...]
CPU: 4 UID: 0 PID: 365 Comm: arping Not tainted 6.17.0-rc2-virtme-g2a89cb21162c #2 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc41 04/01/2014
RIP: 0010:vxlan_xmit+0xb58/0x15f0
[...]
Call Trace:
<TASK>
dev_hard_start_xmit+0x5d/0x1c0
__dev_queue_xmit+0x246/0xfd0
packet_sendmsg+0x113a/0x1850
__sock_sendmsg+0x38/0x70
__sys_sendto+0x126/0x180
__x64_sys_sendto+0x24/0x30
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x4b/0x53
[2]
#!/bin/bash
ip address add 192.0.2.1/32 dev lo
ip nexthop add id 1 via 192.0.2.2 fdb
ip nexthop add id 10 group 1 fdb
ip link add name vx0 up type vxlan id 10010 local 192.0.2.1 dstport 4789 proxy
ip neigh add 192.0.2.3 lladdr 00:11:22:33:44:55 nud perm dev vx0
bridge fdb add 00:11:22:33:44:55 dev vx0 self static nhid 10
arping -b -c 1 -s 192.0.2.1 -I vx0 192.0.2.3
[3]
BUG: kernel NULL pointer dereference, address: 0000000000000000
[...]
CPU: 13 UID: 0 PID: 372 Comm: ndisc6 Not tainted 6.17.0-rc2-virtmne-g6ee90cb26014 #3 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1v996), BIOS 1.17.0-4.fc41 04/01/2x014
RIP: 0010:vxlan_xmit+0x803/0x1600
[...]
Call Trace:
<TASK>
dev_hard_start_xmit+0x5d/0x1c0
__dev_queue_xmit+0x246/0xfd0
ip6_finish_output2+0x210/0x6c0
ip6_finish_output+0x1af/0x2b0
ip6_mr_output+0x92/0x3e0
ip6_send_skb+0x30/0x90
rawv6_sendmsg+0xe6e/0x12e0
__sock_sendmsg+0x38/0x70
__sys_sendto+0x126/0x180
__x64_sys_sendto+0x24/0x30
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f383422ec77
[4]
#!/bin/bash
ip address add 2001:db8:1::1/128 dev lo
ip nexthop add id 1 via 2001:db8:1::1 fdb
ip nexthop add id 10 group 1 fdb
ip link add name vx0 up type vxlan id 10010 local 2001:db8:1::1 dstport 4789 proxy
ip neigh add 2001:db8:1::3 lladdr 00:11:22:33:44:55 nud perm dev vx0
bridge fdb add 00:11:22:33:44:55 dev vx0 self static nhid 10
ndisc6 -r 1 -s 2001:db8:1::1 -w 1 2001:db8:1::3 vx0 |
| In the Linux kernel, the following vulnerability has been resolved:
audit: fix out-of-bounds read in audit_compare_dname_path()
When a watch on dir=/ is combined with an fsnotify event for a
single-character name directly under / (e.g., creating /a), an
out-of-bounds read can occur in audit_compare_dname_path().
The helper parent_len() returns 1 for "/". In audit_compare_dname_path(),
when parentlen equals the full path length (1), the code sets p = path + 1
and pathlen = 1 - 1 = 0. The subsequent loop then dereferences
p[pathlen - 1] (i.e., p[-1]), causing an out-of-bounds read.
Fix this by adding a pathlen > 0 check to the while loop condition
to prevent the out-of-bounds access.
[PM: subject tweak, sign-off email fixes] |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: asus-wmi: Fix racy registrations
asus_wmi_register_driver() may be called from multiple drivers
concurrently, which can lead to the racy list operations, eventually
corrupting the memory and hitting Oops on some ASUS machines.
Also, the error handling is missing, and it forgot to unregister ACPI
lps0 dev ops in the error case.
This patch covers those issues by introducing a simple mutex at
acpi_wmi_register_driver() & *_unregister_driver, and adding the
proper call of asus_s2idle_check_unregister() in the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: SDMA update use unlocked iterator
SDMA update page table may be called from unlocked context, this
generate below warning. Use unlocked iterator to handle this case.
WARNING: CPU: 0 PID: 1475 at
drivers/dma-buf/dma-resv.c:483 dma_resv_iter_next
Call Trace:
dma_resv_iter_first+0x43/0xa0
amdgpu_vm_sdma_update+0x69/0x2d0 [amdgpu]
amdgpu_vm_ptes_update+0x29c/0x870 [amdgpu]
amdgpu_vm_update_range+0x2f6/0x6c0 [amdgpu]
svm_range_unmap_from_gpus+0x115/0x300 [amdgpu]
svm_range_cpu_invalidate_pagetables+0x510/0x5e0 [amdgpu]
__mmu_notifier_invalidate_range_start+0x1d3/0x230
unmap_vmas+0x140/0x150
unmap_region+0xa8/0x110 |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: ismt: Fix an out-of-bounds bug in ismt_access()
When the driver does not check the data from the user, the variable
'data->block[0]' may be very large to cause an out-of-bounds bug.
The following log can reveal it:
[ 33.995542] i2c i2c-1: ioctl, cmd=0x720, arg=0x7ffcb3dc3a20
[ 33.995978] ismt_smbus 0000:00:05.0: I2C_SMBUS_BLOCK_DATA: WRITE
[ 33.996475] ==================================================================
[ 33.996995] BUG: KASAN: out-of-bounds in ismt_access.cold+0x374/0x214b
[ 33.997473] Read of size 18446744073709551615 at addr ffff88810efcfdb1 by task ismt_poc/485
[ 33.999450] Call Trace:
[ 34.001849] memcpy+0x20/0x60
[ 34.002077] ismt_access.cold+0x374/0x214b
[ 34.003382] __i2c_smbus_xfer+0x44f/0xfb0
[ 34.004007] i2c_smbus_xfer+0x10a/0x390
[ 34.004291] i2cdev_ioctl_smbus+0x2c8/0x710
[ 34.005196] i2cdev_ioctl+0x5ec/0x74c
Fix this bug by checking the size of 'data->block[0]' first. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dp: add atomic_check to bridge ops
DRM commit_tails() will disable downstream crtc/encoder/bridge if
both disable crtc is required and crtc->active is set before pushing
a new frame downstream.
There is a rare case that user space display manager issue an extra
screen update immediately followed by close DRM device while down
stream display interface is disabled. This extra screen update will
timeout due to the downstream interface is disabled but will cause
crtc->active be set. Hence the followed commit_tails() called by
drm_release() will pass the disable downstream crtc/encoder/bridge
conditions checking even downstream interface is disabled.
This cause the crash to happen at dp_bridge_disable() due to it trying
to access the main link register to push the idle pattern out while main
link clocks is disabled.
This patch adds atomic_check to prevent the extra frame will not
be pushed down if display interface is down so that crtc->active
will not be set neither. This will fail the conditions checking
of disabling down stream crtc/encoder/bridge which prevent
drm_release() from calling dp_bridge_disable() so that crash
at dp_bridge_disable() prevented.
There is no protection in the DRM framework to check if the display
pipeline has been already disabled before trying again. The only
check is the crtc_state->active but this is controlled by usermode
using UAPI. Hence if the usermode sets this and then crashes, the
driver needs to protect against double disable.
SError Interrupt on CPU7, code 0x00000000be000411 -- SError
CPU: 7 PID: 3878 Comm: Xorg Not tainted 5.19.0-stb-cbq #19
Hardware name: Google Lazor (rev3 - 8) (DT)
pstate: a04000c9 (NzCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __cmpxchg_case_acq_32+0x14/0x2c
lr : do_raw_spin_lock+0xa4/0xdc
sp : ffffffc01092b6a0
x29: ffffffc01092b6a0 x28: 0000000000000028 x27: 0000000000000038
x26: 0000000000000004 x25: ffffffd2973dce48 x24: 0000000000000000
x23: 00000000ffffffff x22: 00000000ffffffff x21: ffffffd2978d0008
x20: ffffffd2978d0008 x19: ffffff80ff759fc0 x18: 0000000000000000
x17: 004800a501260460 x16: 0441043b04600438 x15: 04380000089807d0
x14: 07b0089807800780 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000438 x10: 00000000000007d0 x9 : ffffffd2973e09e4
x8 : ffffff8092d53300 x7 : ffffff808902e8b8 x6 : 0000000000000001
x5 : ffffff808902e880 x4 : 0000000000000000 x3 : ffffff80ff759fc0
x2 : 0000000000000001 x1 : 0000000000000000 x0 : ffffff80ff759fc0
Kernel panic - not syncing: Asynchronous SError Interrupt
CPU: 7 PID: 3878 Comm: Xorg Not tainted 5.19.0-stb-cbq #19
Hardware name: Google Lazor (rev3 - 8) (DT)
Call trace:
dump_backtrace.part.0+0xbc/0xe4
show_stack+0x24/0x70
dump_stack_lvl+0x68/0x84
dump_stack+0x18/0x34
panic+0x14c/0x32c
nmi_panic+0x58/0x7c
arm64_serror_panic+0x78/0x84
do_serror+0x40/0x64
el1h_64_error_handler+0x30/0x48
el1h_64_error+0x68/0x6c
__cmpxchg_case_acq_32+0x14/0x2c
_raw_spin_lock_irqsave+0x38/0x4c
lock_timer_base+0x40/0x78
__mod_timer+0xf4/0x25c
schedule_timeout+0xd4/0xfc
__wait_for_common+0xac/0x140
wait_for_completion_timeout+0x2c/0x54
dp_ctrl_push_idle+0x40/0x88
dp_bridge_disable+0x24/0x30
drm_atomic_bridge_chain_disable+0x90/0xbc
drm_atomic_helper_commit_modeset_disables+0x198/0x444
msm_atomic_commit_tail+0x1d0/0x374
commit_tail+0x80/0x108
drm_atomic_helper_commit+0x118/0x11c
drm_atomic_commit+0xb4/0xe0
drm_client_modeset_commit_atomic+0x184/0x224
drm_client_modeset_commit_locked+0x58/0x160
drm_client_modeset_commit+0x3c/0x64
__drm_fb_helper_restore_fbdev_mode_unlocked+0x98/0xac
drm_fb_helper_set_par+0x74/0x80
drm_fb_helper_hotplug_event+0xdc/0xe0
__drm_fb_helper_restore_fbdev_mode_unlocked+0x7c/0xac
drm_fb_helper_restore_fbdev_mode_unlocked+0x20/0x2c
drm_fb_helper_lastclose+0x20/0x2c
drm_lastclose+0x44/0x6c
drm_release+0x88/0xd4
__fput+0x104/0x220
____fput+0x1c/0x28
task_work_run+0x8c/0x100
d
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
media: atomisp: prevent integer overflow in sh_css_set_black_frame()
The "height" and "width" values come from the user so the "height * width"
multiplication can overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: greybus: audio_helper: remove unused and wrong debugfs usage
In the greybus audio_helper code, the debugfs file for the dapm has the
potential to be removed and memory will be leaked. There is also the
very real potential for this code to remove ALL debugfs entries from the
system, and it seems like this is what will really happen if this code
ever runs. This all is very wrong as the greybus audio driver did not
create this debugfs file, the sound core did and controls the lifespan
of it.
So remove all of the debugfs logic from the audio_helper code as there's
no way it could be correct. If this really is needed, it can come back
with a fixup for the incorrect usage of the debugfs_lookup() call which
is what caused this to be noticed at all. |
| In the Linux kernel, the following vulnerability has been resolved:
ubifs: Fix memory leak in do_rename
If renaming a file in an encrypted directory, function
fscrypt_setup_filename allocates memory for a file name. This name is
never used, and before returning to the caller the memory for it is not
freed.
When running kmemleak on it we see that it is registered as a leak. The
report below is triggered by a simple program 'rename' that renames a
file in an encrypted directory:
unreferenced object 0xffff888101502840 (size 32):
comm "rename", pid 9404, jiffies 4302582475 (age 435.735s)
backtrace:
__kmem_cache_alloc_node
__kmalloc
fscrypt_setup_filename
do_rename
ubifs_rename
vfs_rename
do_renameat2
To fix this we can remove the call to fscrypt_setup_filename as it's not
needed. |
| In the Linux kernel, the following vulnerability has been resolved:
modpost: fix off by one in is_executable_section()
The > comparison should be >= to prevent an out of bounds array
access. |
| In the Linux kernel, the following vulnerability has been resolved:
mlx5: fix possible ptp queue fifo use-after-free
Fifo indexes are not checked during pop operations and it leads to
potential use-after-free when poping from empty queue. Such case was
possible during re-sync action. WARN_ON_ONCE covers future cases.
There were out-of-order cqe spotted which lead to drain of the queue and
use-after-free because of lack of fifo pointers check. Special check and
counter are added to avoid resync operation if SKB could not exist in the
fifo because of OOO cqe (skb_id must be between consumer and producer
index). |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: Fix Oops by 9.1 surround channel names
get_line_out_pfx() may trigger an Oops by overflowing the static array
with more than 8 channels. This was reported for MacBookPro 12,1 with
Cirrus codec.
As a workaround, extend for the 9.1 channels and also fix the
potential Oops by unifying the code paths accessing the same array
with the proper size check. |
| In the Linux kernel, the following vulnerability has been resolved:
kernel/printk/index.c: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
time/debug: Fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once. |