| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Fast DDS is a C++ implementation of the DDS (Data Distribution Service) standard of the OMG (Object Management Group
). Prior to versions 3.4.1, 3.3.1, and 2.6.11, when the security mode is enabled, modifying the DATA Submessage within an
SPDP packet sent by a publisher causes a heap buffer overflow, resulting in remote termination of Fast-DDS. If the fields
of `PID_IDENTITY_TOKEN` or `PID_PERMISSIONS_TOKEN` in the DATA Submessage — specifically by tampering with the `str_size`
value read by `readString` (called from `readBinaryProperty`) — are modified, a 32-bit integer overflow can occur, causing
`std::vector::resize` to use an attacker-controlled size and quickly trigger heap buffer overflow and remote process term
ination. Versions 3.4.1, 3.3.1, and 2.6.11 patch the issue. |
| A flaw was found in github.com/go-viper/mapstructure/v2, in the field processing component using mapstructure.WeakDecode. This vulnerability allows information disclosure through detailed error messages that may leak sensitive input values via malformed user-supplied data processed in security-critical contexts. |
| A SQL injection vulnerability exists in the login functionality of Fikir Odalari AdminPando 1.0.1 before 2026-01-26. The username and password parameters are vulnerable to SQL injection, allowing unauthenticated attackers to bypass authentication completely. Successful exploitation grants full administrative access to the application, including the ability to manipulate the public-facing website content (HTML/DOM manipulation). |
| A flaw was found in libsoup, an HTTP client/server library. This HTTP Request Smuggling vulnerability arises from non-RFC-compliant parsing in the soup_filter_input_stream_read_line() logic, where libsoup accepts malformed chunk headers, such as lone line feed (LF) characters instead of the required carriage return and line feed (CRLF). A remote attacker can exploit this without authentication or user interaction by sending specially crafted chunked requests. This allows libsoup to parse and process multiple HTTP requests from a single network message, potentially leading to information disclosure. |
| A flaw was found in Glib's content type parsing logic. This buffer underflow vulnerability occurs because the length of a header line is stored in a signed integer, which can lead to integer wraparound for very large inputs. This results in pointer underflow and out-of-bounds memory access. Exploitation requires a local user to install or process a specially crafted treemagic file, which can lead to local denial of service or application instability. |
| A flaw was found in npm-serialize-javascript. The vulnerability occurs because the serialize-javascript module does not properly sanitize certain inputs, such as regex or other JavaScript object types, allowing an attacker to inject malicious code. This code could be executed when deserialized by a web browser, causing Cross-site scripting (XSS) attacks. This issue is critical in environments where serialized data is sent to web clients, potentially compromising the security of the website or web application using this package. |
| Heap-based Buffer Overflow vulnerability in TP-Link Archer AX53 v1.0 (tmpserver modules) allows authenticated adjacent attackers to cause a segmentation fault or potentially execute arbitrary code via a specially crafted network packet containing an excessive number of fields with zero‑length values.This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| A vulnerability was found in Golang FIPS OpenSSL. This flaw allows a malicious user to randomly cause an uninitialized buffer length variable with a zeroed buffer to be returned in FIPS mode. It may also be possible to force a false positive match between non-equal hashes when comparing a trusted computed hmac sum to an untrusted input sum if an attacker can send a zeroed buffer in place of a pre-computed sum. It is also possible to force a derived key to be all zeros instead of an unpredictable value. This may have follow-on implications for the Go TLS stack. |
| An issue was discovered in the Divi Builder plugin, Divi theme, and Divi Extra theme before 4.5.3 for WordPress. Authenticated attackers, with contributor-level or above capabilities, can upload arbitrary files, including .php files. This occurs because the check for file extensions is on the client side. |
| A flaw was found in coredns. This issue could lead to invalid cache entries returning due to incorrectly implemented caching. |
| Heap-based Buffer Overflow vulnerability in TP-Link Archer AX53 v1.0 (tmpserver modules) allows authenticated adjacent attackers to cause a segmentation fault or potentially execute arbitrary code via a specially crafted network packet whose length exceeds the maximum expected value.This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| A flaw was found in the Submariner project. Due to unnecessary role-based access control permissions, a privileged attacker can run a malicious container on a node that may allow them to steal service account tokens and further compromise other nodes and potentially the entire cluster. |
| A flaw was found in GLib. An integer overflow vulnerability in its Unicode case conversion implementation can lead to memory corruption. By processing specially crafted and extremely large Unicode strings, an attacker could trigger an undersized memory allocation, resulting in out-of-bounds writes. This could cause applications utilizing GLib for string conversion to crash or become unstable. |
| A flaw was found in the GLib Base64 encoding routine when processing very large input data. Due to incorrect use of integer types during length calculation, the library may miscalculate buffer boundaries. This can cause memory writes outside the allocated buffer. Applications that process untrusted or extremely large Base64 input using GLib may crash or behave unpredictably. |
| In the Linux kernel, the following vulnerability has been resolved:
md: don't dereference mddev after export_rdev()
Except for initial reference, mddev->kobject is referenced by
rdev->kobject, and if the last rdev is freed, there is no guarantee that
mddev is still valid. Hence mddev should not be used anymore after
export_rdev().
This problem can be triggered by following test for mdadm at very
low rate:
New file: mdadm/tests/23rdev-lifetime
devname=${dev0##*/}
devt=`cat /sys/block/$devname/dev`
pid=""
runtime=2
clean_up_test() {
pill -9 $pid
echo clear > /sys/block/md0/md/array_state
}
trap 'clean_up_test' EXIT
add_by_sysfs() {
while true; do
echo $devt > /sys/block/md0/md/new_dev
done
}
remove_by_sysfs(){
while true; do
echo remove > /sys/block/md0/md/dev-${devname}/state
done
}
echo md0 > /sys/module/md_mod/parameters/new_array || die "create md0 failed"
add_by_sysfs &
pid="$pid $!"
remove_by_sysfs &
pid="$pid $!"
sleep $runtime
exit 0
Test cmd:
./test --save-logs --logdir=/tmp/ --keep-going --dev=loop --tests=23rdev-lifetime
Test result:
general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6bcb: 0000 [#4] PREEMPT SMP
CPU: 0 PID: 1292 Comm: test Tainted: G D W 6.5.0-rc2-00121-g01e55c376936 #562
RIP: 0010:md_wakeup_thread+0x9e/0x320 [md_mod]
Call Trace:
<TASK>
mddev_unlock+0x1b6/0x310 [md_mod]
rdev_attr_store+0xec/0x190 [md_mod]
sysfs_kf_write+0x52/0x70
kernfs_fop_write_iter+0x19a/0x2a0
vfs_write+0x3b5/0x770
ksys_write+0x74/0x150
__x64_sys_write+0x22/0x30
do_syscall_64+0x40/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Fix this problem by don't dereference mddev after export_rdev(). |
| In the Linux kernel, the following vulnerability has been resolved:
OPP: Fix potential null ptr dereference in dev_pm_opp_get_required_pstate()
"opp" pointer is dereferenced before the IS_ERR_OR_NULL() check. Fix it by
removing the dereference to cache opp_table and dereference it directly
where opp_table is used.
This fixes the following smatch warning:
drivers/opp/core.c:232 dev_pm_opp_get_required_pstate() warn: variable
dereferenced before IS_ERR check 'opp' (see line 230) |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: nSVM: Check instead of asserting on nested TSC scaling support
Check for nested TSC scaling support on nested SVM VMRUN instead of
asserting that TSC scaling is exposed to L1 if L1's MSR_AMD64_TSC_RATIO
has diverged from KVM's default. Userspace can trigger the WARN at will
by writing the MSR and then updating guest CPUID to hide the feature
(modifying guest CPUID is allowed anytime before KVM_RUN). E.g. hacking
KVM's state_test selftest to do
vcpu_set_msr(vcpu, MSR_AMD64_TSC_RATIO, 0);
vcpu_clear_cpuid_feature(vcpu, X86_FEATURE_TSCRATEMSR);
after restoring state in a new VM+vCPU yields an endless supply of:
------------[ cut here ]------------
WARNING: CPU: 164 PID: 62565 at arch/x86/kvm/svm/nested.c:699
nested_vmcb02_prepare_control+0x3d6/0x3f0 [kvm_amd]
Call Trace:
<TASK>
enter_svm_guest_mode+0x114/0x560 [kvm_amd]
nested_svm_vmrun+0x260/0x330 [kvm_amd]
vmrun_interception+0x29/0x30 [kvm_amd]
svm_invoke_exit_handler+0x35/0x100 [kvm_amd]
svm_handle_exit+0xe7/0x180 [kvm_amd]
kvm_arch_vcpu_ioctl_run+0x1eab/0x2570 [kvm]
kvm_vcpu_ioctl+0x4c9/0x5b0 [kvm]
__se_sys_ioctl+0x7a/0xc0
__x64_sys_ioctl+0x21/0x30
do_syscall_64+0x41/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x45ca1b
Note, the nested #VMEXIT path has the same flaw, but needs a different
fix and will be handled separately. |
| Heap-based Buffer Overflow vulnerability in TP-Link Archer AX53 v1.0 (tmpserver modules) allows authenticated adjacent attackers to cause a segmentation fault or potentially execute arbitrary code via a specially crafted network packet containing a field whose length exceeds the maximum expected value.This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| SSH Hostkey misconfiguration vulnerability in TP-Link Archer AX53 v1.0 (tmpserver modules) allows attackers to obtain device credentials through a specially crafted man‑in‑the‑middle (MITM) attack. This could enable unauthorized access if captured credentials are reused.This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix memory leaks in ext4_fname_{setup_filename,prepare_lookup}
If the filename casefolding fails, we'll be leaking memory from the
fscrypt_name struct, namely from the 'crypto_buf.name' member.
Make sure we free it in the error path on both ext4_fname_setup_filename()
and ext4_fname_prepare_lookup() functions. |