| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A SQL injection vulnerability was discovered in the /articles endpoint of MyClub 0.5, affecting the query parameters Content, GroupName, PersonName, lastUpdate, pool, and title. Due to insufficient input sanitisation, an unauthenticated remote attacker could inject arbitrary SQL commands via a crafted GET request, potentially leading to information disclosure or manipulation of the database. |
| A security vulnerability was identified in Obsidian Scheduler's REST API 5.0.0 thru 6.3.0. If an account is locked out due to not enrolling in MFA (e.g. after the 7-day enforcement window), the REST API still allows the use of Basic Authentication to authenticate and perform administrative actions. In particular, the default admin account was found to be locked out via the web interface but still usable through the REST API. This allowed creation of a new privileged user, bypassing MFA protections. This undermines the intended security posture of MFA enforcement. |
| In Shenzhen C-Data Technology Co. FD602GW-DX-R410 (firmware v2.2.14), the web management interface contains an authenticated CSRF vulnerability on the reboot endpoint (/boaform/admin/formReboot). An attacker can craft a malicious webpage that, when visited by an authenticated administrator, causes the router to reboot without explicit user consent. This lack of CSRF protection on a sensitive administrative function can lead to denial of service by disrupting network availability. |
| Aztech DSL5005EN firmware 1.00.AZ_2013-05-10 and possibly other versions allows unauthenticated attackers to change the administrator password via a crafted POST request to sysAccess.asp. This allows full administrative control of the router without authentication. |
| AT_NA2000 from Nanda Automation Technology vendor has a denial-of-service vulnerability. For the processing of TCP RST packets, PLC AT_NA2000 has a wide acceptable range of sequence numbers. It does not require the sequence number to exactly match the next expected sequence value, just to be within the current receive window, which violates RFC5961. This flaw allows attackers to send multiple random TCP RST packets to hit the acceptable range of sequence numbers, thereby interrupting normal connections and causing a denial-of-service attack. |
| Openindiana, kernel SunOS 5.11 has a denial of service vulnerability. For the processing of TCP packets with RST or SYN flag set, Openindiana has a wide acceptable range of sequence numbers. It does not require the sequence number to exactly match the next expected sequence value, just to be within the current receive window, which violates RFC5961. This flaw allows attackers to send multiple random TCP RST/SYN packets to hit the acceptable range of sequence numbers, thereby interrupting normal connections and causing a denial of service attack. |
| Indian Bank IndSMART Android App 3.8.1 is vulnerable to Missing SSL Certificate Validation in NuWebViewActivity. |
| An Insecure Direct Object Reference (IDOR) vulnerability was discovered in ARD. The flaw exists in the `fe_uid` parameter of the payment history API endpoint. An authenticated attacker can manipulate this parameter to access the payment history of other users without authorization. |
| Inconsistent interpretation of http requests ('http request/response smuggling') in ASP.NET Core allows an authorized attacker to bypass a security feature over a network. |
| HP ThinPro 8.1 System management application failed to verify user's true id. HP has released HP ThinPro 8.1 SP8, which includes updates to mitigate potential vulnerabilities. |
| A potential
out-of-bound reads vulnerability in HPE ProLiant RL300 Gen11 Server's UEFI firmware. |
| Consul and Consul Enterprise’s (“Consul”) event endpoint is vulnerable to denial of service (DoS) due to lack of maximum value on the Content Length header. This vulnerability, CVE-2025-11375, is fixed in Consul Community Edition 1.22.0 and Consul Enterprise 1.22.0, 1.21.6, 1.20.8 and 1.18.12. |
| Consul and Consul Enterprise’s (“Consul”) key/value endpoint is vulnerable to denial of service (DoS) due to incorrect Content Length header validation. This vulnerability, CVE-2025-11374, is fixed in Consul Community Edition 1.22.0 and Consul Enterprise 1.22.0, 1.21.6, 1.20.8 and 1.18.12. |
| The WP Private Content Plus through 3.6.2 provides a global content protection feature that requires a password. However, the access control check is based only on the presence of an unprotected client-side cookie. As a result, an unauthenticated attacker can completely bypass the password protection by manually setting the cookie value in their browser. |
| An issue in SunOS Omnios v5.11 allows attackers to cause a Denial of Service (DoS) via repeatedly sending crafted TCP packets. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: use RCU protection in __ip_rt_update_pmtu()
__ip_rt_update_pmtu() must use RCU protection to make
sure the net structure it reads does not disappear. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/ast: astdp: Fix timeout for enabling video signal
The ASTDP transmitter sometimes takes up to 1 second for enabling the
video signal, while the timeout is only 200 msec. This results in a
kernel error message. Increase the timeout to 1 second. An example
of the error message is shown below.
[ 697.084433] ------------[ cut here ]------------
[ 697.091115] ast 0000:02:00.0: [drm] drm_WARN_ON(!__ast_dp_wait_enable(ast, enabled))
[ 697.091233] WARNING: CPU: 1 PID: 160 at drivers/gpu/drm/ast/ast_dp.c:232 ast_dp_set_enable+0x123/0x140 [ast]
[...]
[ 697.272469] RIP: 0010:ast_dp_set_enable+0x123/0x140 [ast]
[...]
[ 697.415283] Call Trace:
[ 697.420727] <TASK>
[ 697.425908] ? show_trace_log_lvl+0x196/0x2c0
[ 697.433304] ? show_trace_log_lvl+0x196/0x2c0
[ 697.440693] ? drm_atomic_helper_commit_modeset_enables+0x30a/0x470
[ 697.450115] ? ast_dp_set_enable+0x123/0x140 [ast]
[ 697.458059] ? __warn.cold+0xaf/0xca
[ 697.464713] ? ast_dp_set_enable+0x123/0x140 [ast]
[ 697.472633] ? report_bug+0x134/0x1d0
[ 697.479544] ? handle_bug+0x58/0x90
[ 697.486127] ? exc_invalid_op+0x13/0x40
[ 697.492975] ? asm_exc_invalid_op+0x16/0x20
[ 697.500224] ? preempt_count_sub+0x14/0xc0
[ 697.507473] ? ast_dp_set_enable+0x123/0x140 [ast]
[ 697.515377] ? ast_dp_set_enable+0x123/0x140 [ast]
[ 697.523227] drm_atomic_helper_commit_modeset_enables+0x30a/0x470
[ 697.532388] drm_atomic_helper_commit_tail+0x58/0x90
[ 697.540400] ast_mode_config_helper_atomic_commit_tail+0x30/0x40 [ast]
[ 697.550009] commit_tail+0xfe/0x1d0
[ 697.556547] drm_atomic_helper_commit+0x198/0x1c0
This is a cosmetical problem. Enabling the video signal still works
even with the error message. The problem has always been present, but
only recent versions of the ast driver warn about missing the timeout. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Check the return value of of_property_read_string_index()
Somewhen between 6.10 and 6.11 the driver started to crash on my
MacBookPro14,3. The property doesn't exist and 'tmp' remains
uninitialized, so we pass a random pointer to devm_kstrdup().
The crash I am getting looks like this:
BUG: unable to handle page fault for address: 00007f033c669379
PF: supervisor read access in kernel mode
PF: error_code(0x0001) - permissions violation
PGD 8000000101341067 P4D 8000000101341067 PUD 101340067 PMD 1013bb067 PTE 800000010aee9025
Oops: Oops: 0001 [#1] SMP PTI
CPU: 4 UID: 0 PID: 827 Comm: (udev-worker) Not tainted 6.11.8-gentoo #1
Hardware name: Apple Inc. MacBookPro14,3/Mac-551B86E5744E2388, BIOS 529.140.2.0.0 06/23/2024
RIP: 0010:strlen+0x4/0x30
Code: f7 75 ec 31 c0 c3 cc cc cc cc 48 89 f8 c3 cc cc cc cc 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa <80> 3f 00 74 14 48 89 f8 48 83 c0 01 80 38 00 75 f7 48 29 f8 c3 cc
RSP: 0018:ffffb4aac0683ad8 EFLAGS: 00010202
RAX: 00000000ffffffea RBX: 00007f033c669379 RCX: 0000000000000001
RDX: 0000000000000cc0 RSI: 00007f033c669379 RDI: 00007f033c669379
RBP: 00000000ffffffea R08: 0000000000000000 R09: 00000000c0ba916a
R10: ffffffffffffffff R11: ffffffffb61ea260 R12: ffff91f7815b50c8
R13: 0000000000000cc0 R14: ffff91fafefffe30 R15: ffffb4aac0683b30
FS: 00007f033ccbe8c0(0000) GS:ffff91faeed00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f033c669379 CR3: 0000000107b1e004 CR4: 00000000003706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? __die+0x23/0x70
? page_fault_oops+0x149/0x4c0
? raw_spin_rq_lock_nested+0xe/0x20
? sched_balance_newidle+0x22b/0x3c0
? update_load_avg+0x78/0x770
? exc_page_fault+0x6f/0x150
? asm_exc_page_fault+0x26/0x30
? __pfx_pci_conf1_write+0x10/0x10
? strlen+0x4/0x30
devm_kstrdup+0x25/0x70
brcmf_of_probe+0x273/0x350 [brcmfmac] |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't use btrfs_set_item_key_safe on RAID stripe-extents
Don't use btrfs_set_item_key_safe() to modify the keys in the RAID
stripe-tree, as this can lead to corruption of the tree, which is caught
by the checks in btrfs_set_item_key_safe():
BTRFS info (device nvme1n1): leaf 49168384 gen 15 total ptrs 194 free space 8329 owner 12
BTRFS info (device nvme1n1): refs 2 lock_owner 1030 current 1030
[ snip ]
item 105 key (354549760 230 20480) itemoff 14587 itemsize 16
stride 0 devid 5 physical 67502080
item 106 key (354631680 230 4096) itemoff 14571 itemsize 16
stride 0 devid 1 physical 88559616
item 107 key (354631680 230 32768) itemoff 14555 itemsize 16
stride 0 devid 1 physical 88555520
item 108 key (354717696 230 28672) itemoff 14539 itemsize 16
stride 0 devid 2 physical 67604480
[ snip ]
BTRFS critical (device nvme1n1): slot 106 key (354631680 230 32768) new key (354635776 230 4096)
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.c:2602!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 1 UID: 0 PID: 1055 Comm: fsstress Not tainted 6.13.0-rc1+ #1464
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
RIP: 0010:btrfs_set_item_key_safe+0xf7/0x270
Code: <snip>
RSP: 0018:ffffc90001337ab0 EFLAGS: 00010287
RAX: 0000000000000000 RBX: ffff8881115fd000 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000001 RDI: 00000000ffffffff
RBP: ffff888110ed6f50 R08: 00000000ffffefff R09: ffffffff8244c500
R10: 00000000ffffefff R11: 00000000ffffffff R12: ffff888100586000
R13: 00000000000000c9 R14: ffffc90001337b1f R15: ffff888110f23b58
FS: 00007f7d75c72740(0000) GS:ffff88813bd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa811652c60 CR3: 0000000111398001 CR4: 0000000000370eb0
Call Trace:
<TASK>
? __die_body.cold+0x14/0x1a
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x65/0x80
? btrfs_set_item_key_safe+0xf7/0x270
? exc_invalid_op+0x50/0x70
? btrfs_set_item_key_safe+0xf7/0x270
? asm_exc_invalid_op+0x1a/0x20
? btrfs_set_item_key_safe+0xf7/0x270
btrfs_partially_delete_raid_extent+0xc4/0xe0
btrfs_delete_raid_extent+0x227/0x240
__btrfs_free_extent.isra.0+0x57f/0x9c0
? exc_coproc_segment_overrun+0x40/0x40
__btrfs_run_delayed_refs+0x2fa/0xe80
btrfs_run_delayed_refs+0x81/0xe0
btrfs_commit_transaction+0x2dd/0xbe0
? preempt_count_add+0x52/0xb0
btrfs_sync_file+0x375/0x4c0
do_fsync+0x39/0x70
__x64_sys_fsync+0x13/0x20
do_syscall_64+0x54/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f7d7550ef90
Code: <snip>
RSP: 002b:00007ffd70237248 EFLAGS: 00000202 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007f7d7550ef90
RDX: 000000000000013a RSI: 000000000040eb28 RDI: 0000000000000004
RBP: 000000000000001b R08: 0000000000000078 R09: 00007ffd7023725c
R10: 00007f7d75400390 R11: 0000000000000202 R12: 028f5c28f5c28f5c
R13: 8f5c28f5c28f5c29 R14: 000000000040b520 R15: 00007f7d75c726c8
</TASK>
While the root cause of the tree order corruption isn't clear, using
btrfs_duplicate_item() to copy the item and then adjusting both the key
and the per-device physical addresses is a safe way to counter this
problem. |
| A data corruption vulnerability has been identified in the luksmeta utility when used with the LUKS1 disk encryption format. An attacker with the necessary permissions can exploit this flaw by writing a large amount of metadata to an encrypted device. The utility fails to correctly validate the available space, causing the metadata to overwrite and corrupt the user's encrypted data. This action leads to a permanent loss of the stored information. Devices using the LUKS formats other than LUKS1 are not affected by this issue. |