CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: pxa25x_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Add AML_NO_OPERAND_RESOLVE flag to Timer
ACPICA commit 90310989a0790032f5a0140741ff09b545af4bc5
According to the ACPI specification 19.6.134, no argument is required to be passed for ASL Timer instruction. For taking care of no argument, AML_NO_OPERAND_RESOLVE flag is added to ASL Timer instruction opcode.
When ASL timer instruction interpreted by ACPI interpreter, getting error. After adding AML_NO_OPERAND_RESOLVE flag to ASL Timer instruction opcode, issue is not observed.
=============================================================
UBSAN: array-index-out-of-bounds in acpica/dswexec.c:401:12 index -1 is out of range for type 'union acpi_operand_object *[9]'
CPU: 37 PID: 1678 Comm: cat Not tainted
6.0.0-dev-th500-6.0.y-1+bcf8c46459e407-generic-64k
HW name: NVIDIA BIOS v1.1.1-d7acbfc-dirty 12/19/2022 Call trace:
dump_backtrace+0xe0/0x130
show_stack+0x20/0x60
dump_stack_lvl+0x68/0x84
dump_stack+0x18/0x34
ubsan_epilogue+0x10/0x50
__ubsan_handle_out_of_bounds+0x80/0x90
acpi_ds_exec_end_op+0x1bc/0x6d8
acpi_ps_parse_loop+0x57c/0x618
acpi_ps_parse_aml+0x1e0/0x4b4
acpi_ps_execute_method+0x24c/0x2b8
acpi_ns_evaluate+0x3a8/0x4bc
acpi_evaluate_object+0x15c/0x37c
acpi_evaluate_integer+0x54/0x15c
show_power+0x8c/0x12c [acpi_power_meter] |
Ericsson Catalog Manager and Ericsson Order Care APIs do not have authentication enabled by default. Authentication checks can be configured to remediate the information disclosure issue. |
In the Linux kernel, the following vulnerability has been resolved:
mm/mempolicy: fix memory leak in set_mempolicy_home_node system call
When encountering any vma in the range with policy other than MPOL_BIND or
MPOL_PREFERRED_MANY, an error is returned without issuing a mpol_put on
the policy just allocated with mpol_dup().
This allows arbitrary users to leak kernel memory. |
In the Linux kernel, the following vulnerability has been resolved:
net/smc: Reset connection when trying to use SMCRv2 fails.
We found a crash when using SMCRv2 with 2 Mellanox ConnectX-4. It
can be reproduced by:
- smc_run nginx
- smc_run wrk -t 32 -c 500 -d 30 http://<ip>:<port>
BUG: kernel NULL pointer dereference, address: 0000000000000014
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 8000000108713067 P4D 8000000108713067 PUD 151127067 PMD 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 4 PID: 2441 Comm: kworker/4:249 Kdump: loaded Tainted: G W E 6.4.0-rc1+ #42
Workqueue: smc_hs_wq smc_listen_work [smc]
RIP: 0010:smc_clc_send_confirm_accept+0x284/0x580 [smc]
RSP: 0018:ffffb8294b2d7c78 EFLAGS: 00010a06
RAX: ffff8f1873238880 RBX: ffffb8294b2d7dc8 RCX: 0000000000000000
RDX: 00000000000000b4 RSI: 0000000000000001 RDI: 0000000000b40c00
RBP: ffffb8294b2d7db8 R08: ffff8f1815c5860c R09: 0000000000000000
R10: 0000000000000400 R11: 0000000000000000 R12: ffff8f1846f56180
R13: ffff8f1815c5860c R14: 0000000000000001 R15: 0000000000000001
FS: 0000000000000000(0000) GS:ffff8f1aefd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000014 CR3: 00000001027a0001 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? mlx5_ib_map_mr_sg+0xa1/0xd0 [mlx5_ib]
? smcr_buf_map_link+0x24b/0x290 [smc]
? __smc_buf_create+0x4ee/0x9b0 [smc]
smc_clc_send_accept+0x4c/0xb0 [smc]
smc_listen_work+0x346/0x650 [smc]
? __schedule+0x279/0x820
process_one_work+0x1e5/0x3f0
worker_thread+0x4d/0x2f0
? __pfx_worker_thread+0x10/0x10
kthread+0xe5/0x120
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2c/0x50
</TASK>
During the CLC handshake, server sequentially tries available SMCRv2
and SMCRv1 devices in smc_listen_work().
If an SMCRv2 device is found. SMCv2 based link group and link will be
assigned to the connection. Then assumed that some buffer assignment
errors happen later in the CLC handshake, such as RMB registration
failure, server will give up SMCRv2 and try SMCRv1 device instead. But
the resources assigned to the connection won't be reset.
When server tries SMCRv1 device, the connection creation process will
be executed again. Since conn->lnk has been assigned when trying SMCRv2,
it will not be set to the correct SMCRv1 link in
smcr_lgr_conn_assign_link(). So in such situation, conn->lgr points to
correct SMCRv1 link group but conn->lnk points to the SMCRv2 link
mistakenly.
Then in smc_clc_send_confirm_accept(), conn->rmb_desc->mr[link->link_idx]
will be accessed. Since the link->link_idx is not correct, the related
MR may not have been initialized, so crash happens.
| Try SMCRv2 device first
| |-> conn->lgr: assign existed SMCRv2 link group;
| |-> conn->link: assign existed SMCRv2 link (link_idx may be 1 in SMC_LGR_SYMMETRIC);
| |-> sndbuf & RMB creation fails, quit;
|
| Try SMCRv1 device then
| |-> conn->lgr: create SMCRv1 link group and assign;
| |-> conn->link: keep SMCRv2 link mistakenly;
| |-> sndbuf & RMB creation succeed, only RMB->mr[link_idx = 0]
| initialized.
|
| Then smc_clc_send_confirm_accept() accesses
| conn->rmb_desc->mr[conn->link->link_idx, which is 1], then crash.
v
This patch tries to fix this by cleaning conn->lnk before assigning
link. In addition, it is better to reset the connection and clean the
resources assigned if trying SMCRv2 failed in buffer creation or
registration. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Use number of bits to manage bitmap sizes
To allocate bitmaps, the mpi3mr driver calculates sizes of bitmaps using
byte as unit. However, bitmap helper functions assume that bitmaps are
allocated using unsigned long as unit. This gap causes memory access beyond
the bitmap sizes and results in "BUG: KASAN: slab-out-of-bounds". The BUG
was observed at firmware download to eHBA-9600. Call trace indicated that
the out-of-bounds access happened in find_first_zero_bit() called from
mpi3mr_send_event_ack() for miroc->evtack_cmds_bitmap.
To fix the BUG, do not use bytes to manage bitmap sizes. Instead, use
number of bits, and call bitmap helper functions which take number of bits
as arguments. For memory allocation, call bitmap_zalloc() instead of
kzalloc() and krealloc(). For memory free, call bitmap_free() instead of
kfree(). For zero clear, call bitmap_clear() instead of memset().
Remove three fields for bitmap byte sizes in struct scmd_priv which are no
longer required. Replace the field dev_handle_bitmap_sz with
dev_handle_bitmap_bits to keep number of bits of removepend_bitmap across
resize. |
In the Linux kernel, the following vulnerability has been resolved:
modpost: fix off by one in is_executable_section()
The > comparison should be >= to prevent an out of bounds array
access. |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915/dpt: Treat the DPT BO as a framebuffer
Currently i915_gem_object_is_framebuffer() doesn't treat the
BO containing the framebuffer's DPT as a framebuffer itself.
This means eg. that the shrinker can evict the DPT BO while
leaving the actual FB BO bound, when the DPT is allocated
from regular shmem.
That causes an immediate oops during hibernate as we
try to rewrite the PTEs inside the already evicted
DPT obj.
TODO: presumably this might also be the reason for the
DPT related display faults under heavy memory pressure,
but I'm still not sure how that would happen as the object
should be pinned by intel_dpt_pin() while in active use by
the display engine...
(cherry picked from commit 779cb5ba64ec7df80675a956c9022929514f517a) |
An issue in ClipBucket 5.5.0 and prior versions allows an unauthenticated attacker can exploit the plupload endpoint in photo_uploader.php to upload arbitrary files without any authentication, due to missing access controls in the upload handler |
In the Linux kernel, the following vulnerability has been resolved:
drivers: base: dd: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mwifiex: avoid possible NULL skb pointer dereference
In 'mwifiex_handle_uap_rx_forward()', always check the value
returned by 'skb_copy()' to avoid potential NULL pointer
dereference in 'mwifiex_uap_queue_bridged_pkt()', and drop
original skb in case of copying failure.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
In the Linux kernel, the following vulnerability has been resolved:
tpm: tpm_crb: Add the missed acpi_put_table() to fix memory leak
In crb_acpi_add(), we get the TPM2 table to retrieve information
like start method, and then assign them to the priv data, so the
TPM2 table is not used after the init, should be freed, call
acpi_put_table() to fix the memory leak. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: SDMA update use unlocked iterator
SDMA update page table may be called from unlocked context, this
generate below warning. Use unlocked iterator to handle this case.
WARNING: CPU: 0 PID: 1475 at
drivers/dma-buf/dma-resv.c:483 dma_resv_iter_next
Call Trace:
dma_resv_iter_first+0x43/0xa0
amdgpu_vm_sdma_update+0x69/0x2d0 [amdgpu]
amdgpu_vm_ptes_update+0x29c/0x870 [amdgpu]
amdgpu_vm_update_range+0x2f6/0x6c0 [amdgpu]
svm_range_unmap_from_gpus+0x115/0x300 [amdgpu]
svm_range_cpu_invalidate_pagetables+0x510/0x5e0 [amdgpu]
__mmu_notifier_invalidate_range_start+0x1d3/0x230
unmap_vmas+0x140/0x150
unmap_region+0xa8/0x110 |
In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: Clean dangling pointer on bind error path
mtk_drm_bind() can fail, in which case drm_dev_put() is called,
destroying the drm_device object. However a pointer to it was still
being held in the private object, and that pointer would be passed along
to DRM in mtk_drm_sys_prepare() if a suspend were triggered at that
point, resulting in a panic. Clean the pointer when destroying the
object in the error path to prevent this from happening. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: Fix device management cmd timeout flow
In the UFS error handling flow, the host will send a device management cmd
(NOP OUT) to the device for link recovery. If this cmd times out and
clearing the doorbell fails, ufshcd_wait_for_dev_cmd() will do nothing and
return. hba->dev_cmd.complete struct is not set to NULL.
When this happens, if cmd has been completed by device, then we will call
complete() in __ufshcd_transfer_req_compl(). Because the complete struct is
allocated on the stack, the following crash will occur:
ipanic_die+0x24/0x38 [mrdump]
die+0x344/0x748
arm64_notify_die+0x44/0x104
do_debug_exception+0x104/0x1e0
el1_dbg+0x38/0x54
el1_sync_handler+0x40/0x88
el1_sync+0x8c/0x140
queued_spin_lock_slowpath+0x2e4/0x3c0
__ufshcd_transfer_req_compl+0x3b0/0x1164
ufshcd_trc_handler+0x15c/0x308
ufshcd_host_reset_and_restore+0x54/0x260
ufshcd_reset_and_restore+0x28c/0x57c
ufshcd_err_handler+0xeb8/0x1b6c
process_one_work+0x288/0x964
worker_thread+0x4bc/0xc7c
kthread+0x15c/0x264
ret_from_fork+0x10/0x30 |
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: pxa27x_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
A security vulnerability has been detected in itsourcecode Online Discussion Forum 1.0. This affects an unknown part of the file /members/compose_msg_admin.php. Such manipulation of the argument ID leads to sql injection. The attack may be performed from remote. The exploit has been disclosed publicly and may be used. |
In the Linux kernel, the following vulnerability has been resolved:
staging: vme_user: Fix possible UAF in tsi148_dma_list_add
Smatch report warning as follows:
drivers/staging/vme_user/vme_tsi148.c:1757 tsi148_dma_list_add() warn:
'&entry->list' not removed from list
In tsi148_dma_list_add(), the error path "goto err_dma" will not
remove entry->list from list->entries, but entry will be freed,
then list traversal may cause UAF.
Fix by removeing it from list->entries before free(). |
In the Linux kernel, the following vulnerability has been resolved:
USB: fotg210: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
In the Linux kernel, the following vulnerability has been resolved:
staging: greybus: audio_helper: remove unused and wrong debugfs usage
In the greybus audio_helper code, the debugfs file for the dapm has the
potential to be removed and memory will be leaked. There is also the
very real potential for this code to remove ALL debugfs entries from the
system, and it seems like this is what will really happen if this code
ever runs. This all is very wrong as the greybus audio driver did not
create this debugfs file, the sound core did and controls the lifespan
of it.
So remove all of the debugfs logic from the audio_helper code as there's
no way it could be correct. If this really is needed, it can come back
with a fixup for the incorrect usage of the debugfs_lookup() call which
is what caused this to be noticed at all. |