Search Results (3390 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53524 1 Linux 1 Linux Kernel 2026-01-26 7.8 High
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: pcie: Fix integer overflow in iwl_write_to_user_buf An integer overflow occurs in the iwl_write_to_user_buf() function, which is called by the iwl_dbgfs_monitor_data_read() function. static bool iwl_write_to_user_buf(char __user *user_buf, ssize_t count, void *buf, ssize_t *size, ssize_t *bytes_copied) { int buf_size_left = count - *bytes_copied; buf_size_left = buf_size_left - (buf_size_left % sizeof(u32)); if (*size > buf_size_left) *size = buf_size_left; If the user passes a SIZE_MAX value to the "ssize_t count" parameter, the ssize_t count parameter is assigned to "int buf_size_left". Then compare "*size" with "buf_size_left" . Here, "buf_size_left" is a negative number, so "*size" is assigned "buf_size_left" and goes into the third argument of the copy_to_user function, causing a heap overflow. This is not a security vulnerability because iwl_dbgfs_monitor_data_read() is a debugfs operation with 0400 privileges.
CVE-2025-47268 3 Iputils, Iputils Project, Redhat 3 Iputils, Iputils, Enterprise Linux 2026-01-26 6.5 Medium
ping in iputils before 20250602 allows a denial of service (application error or incorrect data collection) via a crafted ICMP Echo Reply packet, because of a signed 64-bit integer overflow in timestamp multiplication.
CVE-2025-24528 2 Mit, Redhat 5 Kerberos 5, Discovery, Enterprise Linux and 2 more 2026-01-26 7.1 High
In MIT Kerberos 5 (aka krb5) before 1.22 (with incremental propagation), there is an integer overflow for a large update size to resize() in kdb_log.c. An authenticated attacker can cause an out-of-bounds write and kadmind daemon crash.
CVE-2026-23833 1 Esphome 1 Esphome 2026-01-26 7.5 High
ESPHome is a system to control microcontrollers remotely through Home Automation systems. In versions 2025.9.0 through 2025.12.6, an integer overflow in the API component's protobuf decoder allows denial-of-service attacks when API encryption is not used. The bounds check `ptr + field_length > end` in `components/api/proto.cpp` can overflow when a malicious client sends a large `field_length` value. This affects all ESPHome device platforms (ESP32, ESP8266, RP2040, LibreTiny). The overflow bypasses the out-of-bounds check, causing the device to read invalid memory and crash. When using the plaintext API protocol, this attack can be performed without authentication. When noise encryption is enabled, knowledge of the encryption key is required. Users should upgrade to ESPHome 2025.12.7 or later to receive a patch, enable API encryption with a unique key per device, and follow the Security Best Practices.
CVE-2025-15534 1 Raylib 1 Raylib 2026-01-26 5.3 Medium
A vulnerability was identified in raysan5 raylib up to 909f040. Affected by this issue is the function LoadFontData of the file src/rtext.c. The manipulation leads to integer overflow. The attack can only be performed from a local environment. The exploit is publicly available and might be used. The identifier of the patch is 5a3391fdce046bc5473e52afbd835dd2dc127146. It is suggested to install a patch to address this issue.
CVE-2025-14369 1 Mackron 1 Dr Flac 2026-01-26 5.5 Medium
dr_flac, an audio decoder within the dr_libs toolset, contains an integer overflow vulnerability flaw due to trusting the totalPCMFrameCount field from FLAC metadata before calculating buffer size, allowing an attacker with a specially crafted file to perform DoS against programs using the tool.
CVE-2026-0988 1 Redhat 1 Enterprise Linux 2026-01-26 3.7 Low
A flaw was found in glib. Missing validation of offset and count parameters in the g_buffered_input_stream_peek() function can lead to an integer overflow during length calculation. When specially crafted values are provided, this overflow results in an incorrect size being passed to memcpy(), triggering a buffer overflow. This can cause application crashes, leading to a Denial of Service (DoS).
CVE-2025-67125 1 Docopt 1 Docopt.cpp 2026-01-26 4.4 Medium
A signed integer overflow in docopt.cpp v0.6.2 (LeafPattern::match in docopt_private.h) when merging occurrence counters (e.g., default LONG_MAX + first user "-v/--verbose") can cause counter wrap (negative/unbounded semantics) and lead to logic/policy bypass in applications that rely on occurrence-based limits, rate-gating, or safety toggles. In hardened builds (e.g., UBSan or -ftrapv), the overflow may also result in process abort (DoS).
CVE-2025-14242 1 Redhat 1 Enterprise Linux 2026-01-26 6.5 Medium
A flaw was found in vsftpd. This vulnerability allows a denial of service (DoS) via an integer overflow in the ls command parameter parsing, triggered by a remote, authenticated attacker sending a crafted STAT command with a specific byte sequence.
CVE-2025-14178 2 Php, Php Group 2 Php, Php 2026-01-24 6.5 Medium
In PHP versions:8.1.* before 8.1.34, 8.2.* before 8.2.30, 8.3.* before 8.3.29, 8.4.* before 8.4.16, 8.5.* before 8.5.1, a heap buffer overflow occurs in array_merge() when the total element count of packed arrays exceeds 32-bit limits or HT_MAX_SIZE, due to an integer overflow in the precomputation of element counts using zend_hash_num_elements(). This may lead to memory corruption or crashes and affect the integrity and availability of the target server.
CVE-2025-39940 1 Linux 1 Linux Kernel 2026-01-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dm-stripe: fix a possible integer overflow There's a possible integer overflow in stripe_io_hints if we have too large chunk size. Test if the overflow happened, and if it did, don't set limits->io_min and limits->io_opt;
CVE-2026-0880 1 Mozilla 3 Firefox, Firefox Esr, Thunderbird 2026-01-22 8.8 High
Sandbox escape due to integer overflow in the Graphics component. This vulnerability affects Firefox < 147, Firefox ESR < 115.32, Firefox ESR < 140.7, Thunderbird < 147, and Thunderbird < 140.7.
CVE-2023-41175 3 Fedoraproject, Libtiff, Redhat 3 Fedora, Libtiff, Enterprise Linux 2026-01-22 6.5 Medium
A vulnerability was found in libtiff due to multiple potential integer overflows in raw2tiff.c. This flaw allows remote attackers to cause a denial of service or possibly execute an arbitrary code via a crafted tiff image, which triggers a heap-based buffer overflow.
CVE-2023-40745 4 Fedoraproject, Libtiff, Netapp and 1 more 4 Fedora, Libtiff, Active Iq Unified Manager and 1 more 2026-01-22 6.5 Medium
LibTIFF is vulnerable to an integer overflow. This flaw allows remote attackers to cause a denial of service (application crash) or possibly execute an arbitrary code via a crafted tiff image, which triggers a heap-based buffer overflow.
CVE-2025-5914 2 Libarchive, Redhat 19 Libarchive, Cert Manager, Confidential Compute Attestation and 16 more 2026-01-22 7.8 High
A vulnerability has been identified in the libarchive library, specifically within the archive_read_format_rar_seek_data() function. This flaw involves an integer overflow that can ultimately lead to a double-free condition. Exploiting a double-free vulnerability can result in memory corruption, enabling an attacker to execute arbitrary code or cause a denial-of-service condition.
CVE-2026-22801 1 Libpng 1 Libpng 2026-01-21 6.8 Medium
LIBPNG is a reference library for use in applications that read, create, and manipulate PNG (Portable Network Graphics) raster image files. From 1.6.26 to 1.6.53, there is an integer truncation in the libpng simplified write API functions png_write_image_16bit and png_write_image_8bit causes heap buffer over-read when the caller provides a negative row stride (for bottom-up image layouts) or a stride exceeding 65535 bytes. The bug was introduced in libpng 1.6.26 (October 2016) by casts added to silence compiler warnings on 16-bit systems. This vulnerability is fixed in 1.6.54.
CVE-2025-6035 2 Gimp, Redhat 2 Gimp, Enterprise Linux 2026-01-20 6.1 Medium
A flaw was found in GIMP. An integer overflow vulnerability exists in the GIMP "Despeckle" plug-in. The issue occurs due to unchecked multiplication of image dimensions, such as width, height, and bytes-per-pixel (img_bpp), which can result in allocating insufficient memory and subsequently performing out-of-bounds writes. This issue could lead to heap corruption, a potential denial of service (DoS), or arbitrary code execution in certain scenarios.
CVE-2025-14422 1 Gimp 1 Gimp 2026-01-20 7.8 High
GIMP PNM File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of PNM files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-28273.
CVE-2023-53474 1 Linux 1 Linux Kernel 2026-01-20 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/MCE/AMD: Use an u64 for bank_map Thee maximum number of MCA banks is 64 (MAX_NR_BANKS), see a0bc32b3cacf ("x86/mce: Increase maximum number of banks to 64"). However, the bank_map which contains a bitfield of which banks to initialize is of type unsigned int and that overflows when those bit numbers are >= 32, leading to UBSAN complaining correctly: UBSAN: shift-out-of-bounds in arch/x86/kernel/cpu/mce/amd.c:1365:38 shift exponent 32 is too large for 32-bit type 'int' Change the bank_map to a u64 and use the proper BIT_ULL() macro when modifying bits in there. [ bp: Rewrite commit message. ]
CVE-2026-0861 1 Gnu 1 Glibc 2026-01-16 8.4 High
Passing too large an alignment to the memalign suite of functions (memalign, posix_memalign, aligned_alloc) in the GNU C Library version 2.30 to 2.42 may result in an integer overflow, which could consequently result in a heap corruption. Note that the attacker must have control over both, the size as well as the alignment arguments of the memalign function to be able to exploit this. The size parameter must be close enough to PTRDIFF_MAX so as to overflow size_t along with the large alignment argument. This limits the malicious inputs for the alignment for memalign to the range [1<<62+ 1, 1<<63] and exactly 1<<63 for posix_memalign and aligned_alloc. Typically the alignment argument passed to such functions is a known constrained quantity (e.g. page size, block size, struct sizes) and is not attacker controlled, because of which this may not be easily exploitable in practice. An application bug could potentially result in the input alignment being too large, e.g. due to a different buffer overflow or integer overflow in the application or its dependent libraries, but that is again an uncommon usage pattern given typical sources of alignments.