CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Missing Integrity Check in Shelly TRV 20220811-152343/v2.1.8@5afc928c allows malicious users to create a backdoor by redirecting the device to an attacker-controlled machine which serves the manipulated firmware file. The device is updated with the manipulated firmware. |
The Forminator Forms – Contact Form, Payment Form & Custom Form Builder plugin for WordPress is vulnerable to Order Replay in all versions up to, and including, 1.42.0 via the 'handle_stripe_single' function due to insufficient validation on a user controlled key. This makes it possible for unauthenticated attackers to reuse a single Stripe PaymentIntent for multiple transactions. Only the first transaction is processed via Stripe, but the plugin sends a successful email message for each transaction, which may trick an administrator into fulfilling each order. |
An exploitable firmware downgrade vulnerability was discovered on the Netgear WPN824EXT WiFi Range Extender. An attacker can conduct a MITM attack to replace the user-uploaded firmware image with an original old firmware image. This affects Firmware 1.1.1_1.1.9 and earlier. |
An exploitable firmware modification vulnerability was discovered on the Netgear WPN824EXT WiFi Range Extender. An attacker can conduct a MITM attack to modify the user-uploaded firmware image and bypass the CRC check. A successful attack can either introduce a backdoor to the device or make the device DoS. This affects Firmware Version: 1.1.1_1.1.9. |
SAP Business Client, versions 6.5, 7.0, does not perform necessary integrity checks which could be exploited by an attacker under certain conditions to modify the installer. |
The default BKS keystore use an HMAC that is only 16 bits long, which can allow an attacker to compromise the integrity of a BKS keystore. Bouncy Castle release 1.47 changes the BKS format to a format which uses a 160 bit HMAC instead. This applies to any BKS keystore generated prior to BC 1.47. For situations where people need to create the files for legacy reasons a specific keystore type "BKS-V1" was introduced in 1.49. It should be noted that the use of "BKS-V1" is discouraged by the library authors and should only be used where it is otherwise safe to do so, as in where the use of a 16 bit checksum for the file integrity check is not going to cause a security issue in itself. |
An issue was discovered in osquery. A maliciously crafted Universal/fat binary can evade third-party code signing checks. By not completing full inspection of the Universal/fat binary, the user of the third-party tool will believe that the code is signed by Apple, but the malicious unsigned code will execute. This issue affects osquery prior to v3.2.7 |
In the Linux kernel, the following vulnerability has been resolved:
nfsd: map the EBADMSG to nfserr_io to avoid warning
Ext4 will throw -EBADMSG through ext4_readdir when a checksum error
occurs, resulting in the following WARNING.
Fix it by mapping EBADMSG to nfserr_io.
nfsd_buffered_readdir
iterate_dir // -EBADMSG -74
ext4_readdir // .iterate_shared
ext4_dx_readdir
ext4_htree_fill_tree
htree_dirblock_to_tree
ext4_read_dirblock
__ext4_read_dirblock
ext4_dirblock_csum_verify
warn_no_space_for_csum
__warn_no_space_for_csum
return ERR_PTR(-EFSBADCRC) // -EBADMSG -74
nfserrno // WARNING
[ 161.115610] ------------[ cut here ]------------
[ 161.116465] nfsd: non-standard errno: -74
[ 161.117315] WARNING: CPU: 1 PID: 780 at fs/nfsd/nfsproc.c:878 nfserrno+0x9d/0xd0
[ 161.118596] Modules linked in:
[ 161.119243] CPU: 1 PID: 780 Comm: nfsd Not tainted 5.10.0-00014-g79679361fd5d #138
[ 161.120684] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qe
mu.org 04/01/2014
[ 161.123601] RIP: 0010:nfserrno+0x9d/0xd0
[ 161.124676] Code: 0f 87 da 30 dd 00 83 e3 01 b8 00 00 00 05 75 d7 44 89 ee 48 c7 c7 c0 57 24 98 89 44 24 04 c6
05 ce 2b 61 03 01 e8 99 20 d8 00 <0f> 0b 8b 44 24 04 eb b5 4c 89 e6 48 c7 c7 a0 6d a4 99 e8 cc 15 33
[ 161.127797] RSP: 0018:ffffc90000e2f9c0 EFLAGS: 00010286
[ 161.128794] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[ 161.130089] RDX: 1ffff1103ee16f6d RSI: 0000000000000008 RDI: fffff520001c5f2a
[ 161.131379] RBP: 0000000000000022 R08: 0000000000000001 R09: ffff8881f70c1827
[ 161.132664] R10: ffffed103ee18304 R11: 0000000000000001 R12: 0000000000000021
[ 161.133949] R13: 00000000ffffffb6 R14: ffff8881317c0000 R15: ffffc90000e2fbd8
[ 161.135244] FS: 0000000000000000(0000) GS:ffff8881f7080000(0000) knlGS:0000000000000000
[ 161.136695] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 161.137761] CR2: 00007fcaad70b348 CR3: 0000000144256006 CR4: 0000000000770ee0
[ 161.139041] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 161.140291] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 161.141519] PKRU: 55555554
[ 161.142076] Call Trace:
[ 161.142575] ? __warn+0x9b/0x140
[ 161.143229] ? nfserrno+0x9d/0xd0
[ 161.143872] ? report_bug+0x125/0x150
[ 161.144595] ? handle_bug+0x41/0x90
[ 161.145284] ? exc_invalid_op+0x14/0x70
[ 161.146009] ? asm_exc_invalid_op+0x12/0x20
[ 161.146816] ? nfserrno+0x9d/0xd0
[ 161.147487] nfsd_buffered_readdir+0x28b/0x2b0
[ 161.148333] ? nfsd4_encode_dirent_fattr+0x380/0x380
[ 161.149258] ? nfsd_buffered_filldir+0xf0/0xf0
[ 161.150093] ? wait_for_concurrent_writes+0x170/0x170
[ 161.151004] ? generic_file_llseek_size+0x48/0x160
[ 161.151895] nfsd_readdir+0x132/0x190
[ 161.152606] ? nfsd4_encode_dirent_fattr+0x380/0x380
[ 161.153516] ? nfsd_unlink+0x380/0x380
[ 161.154256] ? override_creds+0x45/0x60
[ 161.155006] nfsd4_encode_readdir+0x21a/0x3d0
[ 161.155850] ? nfsd4_encode_readlink+0x210/0x210
[ 161.156731] ? write_bytes_to_xdr_buf+0x97/0xe0
[ 161.157598] ? __write_bytes_to_xdr_buf+0xd0/0xd0
[ 161.158494] ? lock_downgrade+0x90/0x90
[ 161.159232] ? nfs4svc_decode_voidarg+0x10/0x10
[ 161.160092] nfsd4_encode_operation+0x15a/0x440
[ 161.160959] nfsd4_proc_compound+0x718/0xe90
[ 161.161818] nfsd_dispatch+0x18e/0x2c0
[ 161.162586] svc_process_common+0x786/0xc50
[ 161.163403] ? nfsd_svc+0x380/0x380
[ 161.164137] ? svc_printk+0x160/0x160
[ 161.164846] ? svc_xprt_do_enqueue.part.0+0x365/0x380
[ 161.165808] ? nfsd_svc+0x380/0x380
[ 161.166523] ? rcu_is_watching+0x23/0x40
[ 161.167309] svc_process+0x1a5/0x200
[ 161.168019] nfsd+0x1f5/0x380
[ 161.168663] ? nfsd_shutdown_threads+0x260/0x260
[ 161.169554] kthread+0x1c4/0x210
[ 161.170224] ? kthread_insert_work_sanity_check+0x80/0x80
[ 161.171246] ret_from_fork+0x1f/0x30 |
When the Node.js policy feature checks the integrity of a resource against a trusted manifest, the application can intercept the operation and return a forged checksum to the node's policy implementation, thus effectively disabling the integrity check.
Impacts:
This vulnerability affects all users using the experimental policy mechanism in all active release lines: 18.x and, 20.x.
Please note that at the time this CVE was issued, the policy mechanism is an experimental feature of Node.js. |
go-tuf is a Go implementation of The Update Framework (TUF). go-tuf does not correctly implement the client workflow for updating the metadata files for roles other than the root role. Specifically, checks for rollback attacks are not implemented correctly meaning an attacker can cause clients to install software that is older than the software which the client previously knew to be available, and may include software with known vulnerabilities. In more detail, the client code of go-tuf has several issues in regards to preventing rollback attacks: 1. It does not take into account the content of any previously trusted metadata, if available, before proceeding with updating roles other than the root role (i.e., steps 5.4.3.1 and 5.5.5 of the detailed client workflow). This means that any form of version verification done on the newly-downloaded metadata is made using the default value of zero, which always passes. 2. For both timestamp and snapshot roles, go-tuf saves these metadata files as trusted before verifying if the version of the metafiles they refer to is correct (i.e., steps 5.5.4 and 5.6.4 of the detailed client workflow). A fix is available in version 0.3.0 or newer. No workarounds are known for this issue apart from upgrading. |
OpenZeppelin Contracts is a library for secure smart contract development. The functions `ECDSA.recover` and `ECDSA.tryRecover` are vulnerable to a kind of signature malleability due to accepting EIP-2098 compact signatures in addition to the traditional 65 byte signature format. This is only an issue for the functions that take a single `bytes` argument, and not the functions that take `r, v, s` or `r, vs` as separate arguments. The potentially affected contracts are those that implement signature reuse or replay protection by marking the signature itself as used rather than the signed message or a nonce included in it. A user may take a signature that has already been submitted, submit it again in a different form, and bypass this protection. The issue has been patched in 4.7.3. |
Issue summary: The AES-SIV cipher implementation contains a bug that causes
it to ignore empty associated data entries which are unauthenticated as
a consequence.
Impact summary: Applications that use the AES-SIV algorithm and want to
authenticate empty data entries as associated data can be misled by removing,
adding or reordering such empty entries as these are ignored by the OpenSSL
implementation. We are currently unaware of any such applications.
The AES-SIV algorithm allows for authentication of multiple associated
data entries along with the encryption. To authenticate empty data the
application has to call EVP_EncryptUpdate() (or EVP_CipherUpdate()) with
NULL pointer as the output buffer and 0 as the input buffer length.
The AES-SIV implementation in OpenSSL just returns success for such a call
instead of performing the associated data authentication operation.
The empty data thus will not be authenticated.
As this issue does not affect non-empty associated data authentication and
we expect it to be rare for an application to use empty associated data
entries this is qualified as Low severity issue. |
A validation integrity issue was discovered in Fort through 1.6.4 before 2.0.0. RPKI Relying Parties (such as Fort) are supposed to maintain a backup cache of the remote RPKI data. This can be employed as a fallback in case a new fetch fails or yields incorrect files. However, the product currently uses its cache merely as a bandwidth saving tool (because fetching is performed through deltas). If a fetch fails midway or yields incorrect files, there is no viable fallback. This leads to incomplete route origin validation data. |
Infotecs ViPNet Client and Coordinator before 4.3.2-42442 allow local users to gain privileges by placing a Trojan horse ViPNet update file in the update folder. The attack succeeds because of incorrect folder permissions in conjunction with a lack of integrity and authenticity checks. |
rsync 3.1.3-development before 2017-10-24 mishandles archaic checksums, which makes it easier for remote attackers to bypass intended access restrictions. NOTE: the rsync development branch has significant use beyond the rsync developers, e.g., the code has been copied for use in various GitHub projects. |
The Lenovo Service Framework Android application uses a set of nonsecure credentials when performing integrity verification of downloaded applications and/or data. This exposes the application to man-in-the-middle attacks leading to possible remote code execution. |
An issue was discovered in Cloud Foundry Foundation BOSH Release 261.x versions prior to 261.3 and all 260.x versions. In certain cases an authenticated Director user can provide a malicious checksum that could allow them to escalate their privileges on the Director VM, aka "BOSH Director Shell Injection Vulnerabilities." |
Nimbus JOSE+JWT before 4.39 proceeds improperly after detection of an invalid HMAC in authenticated AES-CBC decryption, which allows attackers to conduct a padding oracle attack. |
The Comcast firmware on Motorola MX011ANM (firmware version MX011AN_2.9p6s1_PROD_sey) and Xfinity XR11-20 Voice Remote devices allows local users to upload arbitrary firmware images to an XR11 by leveraging root access. In other words, there is no protection mechanism involving digital signatures for the firmware. |
The Microchip RN4870 module firmware 1.43 (and the Microchip PIC LightBlue Explorer Demo 4.2 DT100112) accepts PairCon_rmSend with incorrect values. |