| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| TinyXML through 2.6.2 has an infinite loop in TiXmlParsingData::Stamp in tinyxmlparser.cpp via the TIXML_UTF_LEAD_0 case. It can be triggered by a crafted XML message and leads to a denial of service. |
| RADIUS Protocol under RFC 2865 is susceptible to forgery attacks by a local attacker who can modify any valid Response (Access-Accept, Access-Reject, or Access-Challenge) to any other response using a chosen-prefix collision attack against MD5 Response Authenticator signature. |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix loop termination condition in gss_free_in_token_pages()
The in_token->pages[] array is not NULL terminated. This results in
the following KASAN splat:
KASAN: maybe wild-memory-access in range [0x04a2013400000008-0x04a201340000000f] |
| In PHP 8.3.* before 8.3.5, function mb_encode_mimeheader() runs endlessly for some inputs that contain long strings of non-space characters followed by a space. This could lead to a potential DoS attack if a hostile user sends data to an application that uses this function. |
| In FRRouting (FRR) through 9.1, an infinite loop can occur when receiving a MP/GR capability as a dynamic capability because malformed data results in a pointer not advancing. |
| Loop with Unreachable Exit Condition ('Infinite Loop') vulnerability in Apache Commons Compress.This issue affects Apache Commons Compress: from 1.3 through 1.25.0.
Users are recommended to upgrade to version 1.26.0 which fixes the issue. |
| PJSIP is a free and open source multimedia communication library written in the C language. Versions 2.12 and prior contain a denial-of-service vulnerability that affects PJSIP users that consume PJSIP's XML parsing in their apps. Users are advised to update. There are no known workarounds. |
| InventoryGui is a library for creating chest GUIs for Bukkit/Spigot plugins. Versions before 1.6.5 contain a vulnerability where any plugin using a GUI with the GuiStorageElement and allows taking out items out of that element can allow item duplication when the experimental Bundle item feature is enabled on the server. The vulnerability is resolved in version 1.6.5. |
| InventoryGui is a library for creating chest GUIs for Bukkit/Spigot plugins. Versions 1.6.3-SNAPSHOT and earlier contain a vulnerability where GUIs using GuiStorageElement can allow item duplication when the experimental Bundle item feature is enabled on the server. The vulnerability is resolved in version 1.6.4-SNAPSHOT. |
| There is a HIGH severity vulnerability affecting the CPython "zipfile"
module affecting "zipfile.Path". Note that the more common API "zipfile.ZipFile" class is unaffected.
When iterating over names of entries in a zip archive (for example, methods
of "zipfile.Path" like "namelist()", "iterdir()", etc)
the process can be put into an infinite loop with a maliciously crafted
zip archive. This defect applies when reading only metadata or extracting
the contents of the zip archive. Programs that are not handling
user-controlled zip archives are not affected. |
| nanoid (aka Nano ID) before 5.0.9 mishandles non-integer values. 3.3.8 is also a fixed version. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-multipath: defer partition scanning
We need to suppress the partition scan from occuring within the
controller's scan_work context. If a path error occurs here, the IO will
wait until a path becomes available or all paths are torn down, but that
action also occurs within scan_work, so it would deadlock. Defer the
partion scan to a different context that does not block scan_work. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: fix 6 GHz scan construction
If more than 255 colocated APs exist for the set of all
APs found during 2.4/5 GHz scanning, then the 6 GHz scan
construction will loop forever since the loop variable
has type u8, which can never reach the number found when
that's bigger than 255, and is stored in a u32 variable.
Also move it into the loops to have a smaller scope.
Using a u32 there is fine, we limit the number of APs in
the scan list and each has a limit on the number of RNR
entries due to the frame size. With a limit of 1000 scan
results, a frame size upper bound of 4096 (really it's
more like ~2300) and a TBTT entry size of at least 11,
we get an upper bound for the number of ~372k, well in
the bounds of a u32. |
| GNOME libsoup before 3.6.1 has an infinite loop, and memory consumption. during the reading of certain patterns of WebSocket data from clients. |
| In the Linux kernel, the following vulnerability has been resolved:
filemap: Fix bounds checking in filemap_read()
If the caller supplies an iocb->ki_pos value that is close to the
filesystem upper limit, and an iterator with a count that causes us to
overflow that limit, then filemap_read() enters an infinite loop.
This behaviour was discovered when testing xfstests generic/525 with the
"localio" optimisation for loopback NFS mounts. |
| In the Linux kernel, the following vulnerability has been resolved:
fsdax: dax_unshare_iter needs to copy entire blocks
The code that copies data from srcmap to iomap in dax_unshare_iter is
very very broken, which bfoster's recent fsx changes have exposed.
If the pos and len passed to dax_file_unshare are not aligned to an
fsblock boundary, the iter pos and length in the _iter function will
reflect this unalignment.
dax_iomap_direct_access always returns a pointer to the start of the
kmapped fsdax page, even if its pos argument is in the middle of that
page. This is catastrophic for data integrity when iter->pos is not
aligned to a page, because daddr/saddr do not point to the same byte in
the file as iter->pos. Hence we corrupt user data by copying it to the
wrong place.
If iter->pos + iomap_length() in the _iter function not aligned to a
page, then we fail to copy a full block, and only partially populate the
destination block. This is catastrophic for data confidentiality
because we expose stale pmem contents.
Fix both of these issues by aligning copy_pos/copy_len to a page
boundary (remember, this is fsdax so 1 fsblock == 1 base page) so that
we always copy full blocks.
We're not done yet -- there's no call to invalidate_inode_pages2_range,
so programs that have the file range mmap'd will continue accessing the
old memory mapping after the file metadata updates have completed.
Be careful with the return value -- if the unshare succeeds, we still
need to return the number of bytes that the iomap iter thinks we're
operating on. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: don't set SB_RDONLY after filesystem errors
When the filesystem is mounted with errors=remount-ro, we were setting
SB_RDONLY flag to stop all filesystem modifications. We knew this misses
proper locking (sb->s_umount) and does not go through proper filesystem
remount procedure but it has been the way this worked since early ext2
days and it was good enough for catastrophic situation damage
mitigation. Recently, syzbot has found a way (see link) to trigger
warnings in filesystem freezing because the code got confused by
SB_RDONLY changing under its hands. Since these days we set
EXT4_FLAGS_SHUTDOWN on the superblock which is enough to stop all
filesystem modifications, modifying SB_RDONLY shouldn't be needed. So
stop doing that. |
| MONGO and ZigBee TLV dissector infinite loops in Wireshark 4.2.0 to 4.2.4, 4.0.0 to 4.0.14, and 3.6.0 to 3.6.22 allow denial of service via packet injection or crafted capture file |
| In the Linux kernel, the following vulnerability has been resolved:
x86/sgx: Fix deadlock in SGX NUMA node search
When the current node doesn't have an EPC section configured by firmware
and all other EPC sections are used up, CPU can get stuck inside the
while loop that looks for an available EPC page from remote nodes
indefinitely, leading to a soft lockup. Note how nid_of_current will
never be equal to nid in that while loop because nid_of_current is not
set in sgx_numa_mask.
Also worth mentioning is that it's perfectly fine for the firmware not
to setup an EPC section on a node. While setting up an EPC section on
each node can enhance performance, it is not a requirement for
functionality.
Rework the loop to start and end on *a* node that has SGX memory. This
avoids the deadlock looking for the current SGX-lacking node to show up
in the loop when it never will. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/iwcm: Fix WARNING:at_kernel/workqueue.c:#check_flush_dependency
In the commit aee2424246f9 ("RDMA/iwcm: Fix a use-after-free related to
destroying CM IDs"), the function flush_workqueue is invoked to flush the
work queue iwcm_wq.
But at that time, the work queue iwcm_wq was created via the function
alloc_ordered_workqueue without the flag WQ_MEM_RECLAIM.
Because the current process is trying to flush the whole iwcm_wq, if
iwcm_wq doesn't have the flag WQ_MEM_RECLAIM, verify that the current
process is not reclaiming memory or running on a workqueue which doesn't
have the flag WQ_MEM_RECLAIM as that can break forward-progress guarantee
leading to a deadlock.
The call trace is as below:
[ 125.350876][ T1430] Call Trace:
[ 125.356281][ T1430] <TASK>
[ 125.361285][ T1430] ? __warn (kernel/panic.c:693)
[ 125.367640][ T1430] ? check_flush_dependency (kernel/workqueue.c:3706 (discriminator 9))
[ 125.375689][ T1430] ? report_bug (lib/bug.c:180 lib/bug.c:219)
[ 125.382505][ T1430] ? handle_bug (arch/x86/kernel/traps.c:239)
[ 125.388987][ T1430] ? exc_invalid_op (arch/x86/kernel/traps.c:260 (discriminator 1))
[ 125.395831][ T1430] ? asm_exc_invalid_op (arch/x86/include/asm/idtentry.h:621)
[ 125.403125][ T1430] ? check_flush_dependency (kernel/workqueue.c:3706 (discriminator 9))
[ 125.410984][ T1430] ? check_flush_dependency (kernel/workqueue.c:3706 (discriminator 9))
[ 125.418764][ T1430] __flush_workqueue (kernel/workqueue.c:3970)
[ 125.426021][ T1430] ? __pfx___might_resched (kernel/sched/core.c:10151)
[ 125.433431][ T1430] ? destroy_cm_id (drivers/infiniband/core/iwcm.c:375) iw_cm
[ 125.441209][ T1430] ? __pfx___flush_workqueue (kernel/workqueue.c:3910)
[ 125.473900][ T1430] ? _raw_spin_lock_irqsave (arch/x86/include/asm/atomic.h:107 include/linux/atomic/atomic-arch-fallback.h:2170 include/linux/atomic/atomic-instrumented.h:1302 include/asm-generic/qspinlock.h:111 include/linux/spinlock.h:187 include/linux/spinlock_api_smp.h:111 kernel/locking/spinlock.c:162)
[ 125.473909][ T1430] ? __pfx__raw_spin_lock_irqsave (kernel/locking/spinlock.c:161)
[ 125.482537][ T1430] _destroy_id (drivers/infiniband/core/cma.c:2044) rdma_cm
[ 125.495072][ T1430] nvme_rdma_free_queue (drivers/nvme/host/rdma.c:656 drivers/nvme/host/rdma.c:650) nvme_rdma
[ 125.505827][ T1430] nvme_rdma_reset_ctrl_work (drivers/nvme/host/rdma.c:2180) nvme_rdma
[ 125.505831][ T1430] process_one_work (kernel/workqueue.c:3231)
[ 125.515122][ T1430] worker_thread (kernel/workqueue.c:3306 kernel/workqueue.c:3393)
[ 125.515127][ T1430] ? __pfx_worker_thread (kernel/workqueue.c:3339)
[ 125.531837][ T1430] kthread (kernel/kthread.c:389)
[ 125.539864][ T1430] ? __pfx_kthread (kernel/kthread.c:342)
[ 125.550628][ T1430] ret_from_fork (arch/x86/kernel/process.c:147)
[ 125.558840][ T1430] ? __pfx_kthread (kernel/kthread.c:342)
[ 125.558844][ T1430] ret_from_fork_asm (arch/x86/entry/entry_64.S:257)
[ 125.566487][ T1430] </TASK>
[ 125.566488][ T1430] ---[ end trace 0000000000000000 ]--- |