| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: fs, lock FTE when checking if active
The referenced commits introduced a two-step process for deleting FTEs:
- Lock the FTE, delete it from hardware, set the hardware deletion function
to NULL and unlock the FTE.
- Lock the parent flow group, delete the software copy of the FTE, and
remove it from the xarray.
However, this approach encounters a race condition if a rule with the same
match value is added simultaneously. In this scenario, fs_core may set the
hardware deletion function to NULL prematurely, causing a panic during
subsequent rule deletions.
To prevent this, ensure the active flag of the FTE is checked under a lock,
which will prevent the fs_core layer from attaching a new steering rule to
an FTE that is in the process of deletion.
[ 438.967589] MOSHE: 2496 mlx5_del_flow_rules del_hw_func
[ 438.968205] ------------[ cut here ]------------
[ 438.968654] refcount_t: decrement hit 0; leaking memory.
[ 438.969249] WARNING: CPU: 0 PID: 8957 at lib/refcount.c:31 refcount_warn_saturate+0xfb/0x110
[ 438.970054] Modules linked in: act_mirred cls_flower act_gact sch_ingress openvswitch nsh mlx5_vdpa vringh vhost_iotlb vdpa mlx5_ib mlx5_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi ib_umad rdma_cm ib_ipoib iw_cm ib_cm ib_uverbs ib_core zram zsmalloc fuse [last unloaded: cls_flower]
[ 438.973288] CPU: 0 UID: 0 PID: 8957 Comm: tc Not tainted 6.12.0-rc1+ #8
[ 438.973888] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 438.974874] RIP: 0010:refcount_warn_saturate+0xfb/0x110
[ 438.975363] Code: 40 66 3b 82 c6 05 16 e9 4d 01 01 e8 1f 7c a0 ff 0f 0b c3 cc cc cc cc 48 c7 c7 10 66 3b 82 c6 05 fd e8 4d 01 01 e8 05 7c a0 ff <0f> 0b c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 90
[ 438.976947] RSP: 0018:ffff888124a53610 EFLAGS: 00010286
[ 438.977446] RAX: 0000000000000000 RBX: ffff888119d56de0 RCX: 0000000000000000
[ 438.978090] RDX: ffff88852c828700 RSI: ffff88852c81b3c0 RDI: ffff88852c81b3c0
[ 438.978721] RBP: ffff888120fa0e88 R08: 0000000000000000 R09: ffff888124a534b0
[ 438.979353] R10: 0000000000000001 R11: 0000000000000001 R12: ffff888119d56de0
[ 438.979979] R13: ffff888120fa0ec0 R14: ffff888120fa0ee8 R15: ffff888119d56de0
[ 438.980607] FS: 00007fe6dcc0f800(0000) GS:ffff88852c800000(0000) knlGS:0000000000000000
[ 438.983984] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 438.984544] CR2: 00000000004275e0 CR3: 0000000186982001 CR4: 0000000000372eb0
[ 438.985205] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 438.985842] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 438.986507] Call Trace:
[ 438.986799] <TASK>
[ 438.987070] ? __warn+0x7d/0x110
[ 438.987426] ? refcount_warn_saturate+0xfb/0x110
[ 438.987877] ? report_bug+0x17d/0x190
[ 438.988261] ? prb_read_valid+0x17/0x20
[ 438.988659] ? handle_bug+0x53/0x90
[ 438.989054] ? exc_invalid_op+0x14/0x70
[ 438.989458] ? asm_exc_invalid_op+0x16/0x20
[ 438.989883] ? refcount_warn_saturate+0xfb/0x110
[ 438.990348] mlx5_del_flow_rules+0x2f7/0x340 [mlx5_core]
[ 438.990932] __mlx5_eswitch_del_rule+0x49/0x170 [mlx5_core]
[ 438.991519] ? mlx5_lag_is_sriov+0x3c/0x50 [mlx5_core]
[ 438.992054] ? xas_load+0x9/0xb0
[ 438.992407] mlx5e_tc_rule_unoffload+0x45/0xe0 [mlx5_core]
[ 438.993037] mlx5e_tc_del_fdb_flow+0x2a6/0x2e0 [mlx5_core]
[ 438.993623] mlx5e_flow_put+0x29/0x60 [mlx5_core]
[ 438.994161] mlx5e_delete_flower+0x261/0x390 [mlx5_core]
[ 438.994728] tc_setup_cb_destroy+0xb9/0x190
[ 438.995150] fl_hw_destroy_filter+0x94/0xc0 [cls_flower]
[ 438.995650] fl_change+0x11a4/0x13c0 [cls_flower]
[ 438.996105] tc_new_tfilter+0x347/0xbc0
[ 438.996503] ? __
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: tcp: avoid race between queue_lock lock and destroy
Commit 76d54bf20cdc ("nvme-tcp: don't access released socket during
error recovery") added a mutex_lock() call for the queue->queue_lock
in nvme_tcp_get_address(). However, the mutex_lock() races with
mutex_destroy() in nvme_tcp_free_queue(), and causes the WARN below.
DEBUG_LOCKS_WARN_ON(lock->magic != lock)
WARNING: CPU: 3 PID: 34077 at kernel/locking/mutex.c:587 __mutex_lock+0xcf0/0x1220
Modules linked in: nvmet_tcp nvmet nvme_tcp nvme_fabrics iw_cm ib_cm ib_core pktcdvd nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables qrtr sunrpc ppdev 9pnet_virtio 9pnet pcspkr netfs parport_pc parport e1000 i2c_piix4 i2c_smbus loop fuse nfnetlink zram bochs drm_vram_helper drm_ttm_helper ttm drm_kms_helper xfs drm sym53c8xx floppy nvme scsi_transport_spi nvme_core nvme_auth serio_raw ata_generic pata_acpi dm_multipath qemu_fw_cfg [last unloaded: ib_uverbs]
CPU: 3 UID: 0 PID: 34077 Comm: udisksd Not tainted 6.11.0-rc7 #319
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:__mutex_lock+0xcf0/0x1220
Code: 08 84 d2 0f 85 c8 04 00 00 8b 15 ef b6 c8 01 85 d2 0f 85 78 f4 ff ff 48 c7 c6 20 93 ee af 48 c7 c7 60 91 ee af e8 f0 a7 6d fd <0f> 0b e9 5e f4 ff ff 48 b8 00 00 00 00 00 fc ff df 4c 89 f2 48 c1
RSP: 0018:ffff88811305f760 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff88812c652058 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000001
RBP: ffff88811305f8b0 R08: 0000000000000001 R09: ffffed1075c36341
R10: ffff8883ae1b1a0b R11: 0000000000010498 R12: 0000000000000000
R13: 0000000000000000 R14: dffffc0000000000 R15: ffff88812c652058
FS: 00007f9713ae4980(0000) GS:ffff8883ae180000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fcd78483c7c CR3: 0000000122c38000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? __warn.cold+0x5b/0x1af
? __mutex_lock+0xcf0/0x1220
? report_bug+0x1ec/0x390
? handle_bug+0x3c/0x80
? exc_invalid_op+0x13/0x40
? asm_exc_invalid_op+0x16/0x20
? __mutex_lock+0xcf0/0x1220
? nvme_tcp_get_address+0xc2/0x1e0 [nvme_tcp]
? __pfx___mutex_lock+0x10/0x10
? __lock_acquire+0xd6a/0x59e0
? nvme_tcp_get_address+0xc2/0x1e0 [nvme_tcp]
nvme_tcp_get_address+0xc2/0x1e0 [nvme_tcp]
? __pfx_nvme_tcp_get_address+0x10/0x10 [nvme_tcp]
nvme_sysfs_show_address+0x81/0xc0 [nvme_core]
dev_attr_show+0x42/0x80
? __asan_memset+0x1f/0x40
sysfs_kf_seq_show+0x1f0/0x370
seq_read_iter+0x2cb/0x1130
? rw_verify_area+0x3b1/0x590
? __mutex_lock+0x433/0x1220
vfs_read+0x6a6/0xa20
? lockdep_hardirqs_on+0x78/0x100
? __pfx_vfs_read+0x10/0x10
ksys_read+0xf7/0x1d0
? __pfx_ksys_read+0x10/0x10
? __x64_sys_openat+0x105/0x1d0
do_syscall_64+0x93/0x180
? lockdep_hardirqs_on_prepare+0x16d/0x400
? do_syscall_64+0x9f/0x180
? lockdep_hardirqs_on+0x78/0x100
? do_syscall_64+0x9f/0x180
? __pfx_ksys_read+0x10/0x10
? lockdep_hardirqs_on_prepare+0x16d/0x400
? do_syscall_64+0x9f/0x180
? lockdep_hardirqs_on+0x78/0x100
? do_syscall_64+0x9f/0x180
? lockdep_hardirqs_on_prepare+0x16d/0x400
? do_syscall_64+0x9f/0x180
? lockdep_hardirqs_on+0x78/0x100
? do_syscall_64+0x9f/0x180
? lockdep_hardirqs_on_prepare+0x16d/0x400
? do_syscall_64+0x9f/0x180
? lockdep_hardirqs_on+0x78/0x100
? do_syscall_64+0x9f/0x180
? lockdep_hardirqs_on_prepare+0x16d/0x400
? do_syscall_64+0x9f/0x180
? lockdep_hardirqs_on+0x78/0x100
? do_syscall_64+0x9f/0x180
? do_syscall_64+0x9f/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f9713f55cfa
Code: 55 48 89 e5 48 83 ec 20 48 89 55 e8 48 89 75 f0 89 7d f8 e8 e8 74 f8 ff 48 8b 55 e8 48 8b 75 f0 4
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: fix race condition by adding filter's intermediate sync state
Fix a race condition in the i40e driver that leads to MAC/VLAN filters
becoming corrupted and leaking. Address the issue that occurs under
heavy load when multiple threads are concurrently modifying MAC/VLAN
filters by setting mac and port VLAN.
1. Thread T0 allocates a filter in i40e_add_filter() within
i40e_ndo_set_vf_port_vlan().
2. Thread T1 concurrently frees the filter in __i40e_del_filter() within
i40e_ndo_set_vf_mac().
3. Subsequently, i40e_service_task() calls i40e_sync_vsi_filters(), which
refers to the already freed filter memory, causing corruption.
Reproduction steps:
1. Spawn multiple VFs.
2. Apply a concurrent heavy load by running parallel operations to change
MAC addresses on the VFs and change port VLANs on the host.
3. Observe errors in dmesg:
"Error I40E_AQ_RC_ENOSPC adding RX filters on VF XX,
please set promiscuous on manually for VF XX".
Exact code for stable reproduction Intel can't open-source now.
The fix involves implementing a new intermediate filter state,
I40E_FILTER_NEW_SYNC, for the time when a filter is on a tmp_add_list.
These filters cannot be deleted from the hash list directly but
must be removed using the full process. |
| An attacker with local access the to medical office computer can
escalate his Windows user privileges to "NT AUTHORITY\SYSTEM" by
exploiting a race condition in the Elefant Update Service during the
repair or update process. When using the repair function, the service queries the server for a
list of files and their hashes. In addition, instructions to execute
binaries to finalize the repair process are included. The executables are executed as "NT AUTHORITY\SYSTEM" after they are
copied over to the user writable installation folder (C:\Elefant1). This
means that a user can overwrite either "PostESUUpdate.exe" or
"Update_OpenJava.exe" in the time frame after the copy and before the
execution of the final repair step. The overwritten executable is then executed as "NT AUTHORITY\SYSTEM". |
| In the Linux kernel, the following vulnerability has been resolved:
media: v4l2-tpg: prevent the risk of a division by zero
As reported by Coverity, the logic at tpg_precalculate_line()
blindly rescales the buffer even when scaled_witdh is equal to
zero. If this ever happens, this will cause a division by zero.
Instead, add a WARN_ON_ONCE() to trigger such cases and return
without doing any precalculation. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: iio: frequency: ad9832: fix division by zero in ad9832_calc_freqreg()
In the ad9832_write_frequency() function, clk_get_rate() might return 0.
This can lead to a division by zero when calling ad9832_calc_freqreg().
The check if (fout > (clk_get_rate(st->mclk) / 2)) does not protect
against the case when fout is 0. The ad9832_write_frequency() function
is called from ad9832_write(), and fout is derived from a text buffer,
which can contain any value. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ad7124: fix division by zero in ad7124_set_channel_odr()
In the ad7124_write_raw() function, parameter val can potentially
be zero. This may lead to a division by zero when DIV_ROUND_CLOSEST()
is called within ad7124_set_channel_odr(). The ad7124_write_raw()
function is invoked through the sequence: iio_write_channel_raw() ->
iio_write_channel_attribute() -> iio_channel_write(), with no checks
in place to ensure val is non-zero. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: firewire-lib: Avoid division by zero in apply_constraint_to_size()
The step variable is initialized to zero. It is changed in the loop,
but if it's not changed it will remain zero. Add a variable check
before the division.
The observed behavior was introduced by commit 826b5de90c0b
("ALSA: firewire-lib: fix insufficient PCM rule for period/buffer size"),
and it is difficult to show that any of the interval parameters will
satisfy the snd_interval_test() condition with data from the
amdtp_rate_table[] table.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
irqchip/gic-v4: Don't allow a VMOVP on a dying VPE
Kunkun Jiang reported that there is a small window of opportunity for
userspace to force a change of affinity for a VPE while the VPE has already
been unmapped, but the corresponding doorbell interrupt still visible in
/proc/irq/.
Plug the race by checking the value of vmapp_count, which tracks whether
the VPE is mapped ot not, and returning an error in this case.
This involves making vmapp_count common to both GICv4.1 and its v4.0
ancestor. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-rq-qos: fix crash on rq_qos_wait vs. rq_qos_wake_function race
We're seeing crashes from rq_qos_wake_function that look like this:
BUG: unable to handle page fault for address: ffffafe180a40084
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 100000067 P4D 100000067 PUD 10027c067 PMD 10115d067 PTE 0
Oops: Oops: 0002 [#1] PREEMPT SMP PTI
CPU: 17 UID: 0 PID: 0 Comm: swapper/17 Not tainted 6.12.0-rc3-00013-geca631b8fe80 #11
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:_raw_spin_lock_irqsave+0x1d/0x40
Code: 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 41 54 9c 41 5c fa 65 ff 05 62 97 30 4c 31 c0 ba 01 00 00 00 <f0> 0f b1 17 75 0a 4c 89 e0 41 5c c3 cc cc cc cc 89 c6 e8 2c 0b 00
RSP: 0018:ffffafe180580ca0 EFLAGS: 00010046
RAX: 0000000000000000 RBX: ffffafe180a3f7a8 RCX: 0000000000000011
RDX: 0000000000000001 RSI: 0000000000000003 RDI: ffffafe180a40084
RBP: 0000000000000000 R08: 00000000001e7240 R09: 0000000000000011
R10: 0000000000000028 R11: 0000000000000888 R12: 0000000000000002
R13: ffffafe180a40084 R14: 0000000000000000 R15: 0000000000000003
FS: 0000000000000000(0000) GS:ffff9aaf1f280000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffafe180a40084 CR3: 000000010e428002 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<IRQ>
try_to_wake_up+0x5a/0x6a0
rq_qos_wake_function+0x71/0x80
__wake_up_common+0x75/0xa0
__wake_up+0x36/0x60
scale_up.part.0+0x50/0x110
wb_timer_fn+0x227/0x450
...
So rq_qos_wake_function() calls wake_up_process(data->task), which calls
try_to_wake_up(), which faults in raw_spin_lock_irqsave(&p->pi_lock).
p comes from data->task, and data comes from the waitqueue entry, which
is stored on the waiter's stack in rq_qos_wait(). Analyzing the core
dump with drgn, I found that the waiter had already woken up and moved
on to a completely unrelated code path, clobbering what was previously
data->task. Meanwhile, the waker was passing the clobbered garbage in
data->task to wake_up_process(), leading to the crash.
What's happening is that in between rq_qos_wake_function() deleting the
waitqueue entry and calling wake_up_process(), rq_qos_wait() is finding
that it already got a token and returning. The race looks like this:
rq_qos_wait() rq_qos_wake_function()
==============================================================
prepare_to_wait_exclusive()
data->got_token = true;
list_del_init(&curr->entry);
if (data.got_token)
break;
finish_wait(&rqw->wait, &data.wq);
^- returns immediately because
list_empty_careful(&wq_entry->entry)
is true
... return, go do something else ...
wake_up_process(data->task)
(NO LONGER VALID!)-^
Normally, finish_wait() is supposed to synchronize against the waker.
But, as noted above, it is returning immediately because the waitqueue
entry has already been removed from the waitqueue.
The bug is that rq_qos_wake_function() is accessing the waitqueue entry
AFTER deleting it. Note that autoremove_wake_function() wakes the waiter
and THEN deletes the waitqueue entry, which is the proper order.
Fix it by swapping the order. We also need to use
list_del_init_careful() to match the list_empty_careful() in
finish_wait(). |
| In the Linux kernel, the following vulnerability has been resolved:
media: venus: fix use after free bug in venus_remove due to race condition
in venus_probe, core->work is bound with venus_sys_error_handler, which is
used to handle error. The code use core->sys_err_done to make sync work.
The core->work is started in venus_event_notify.
If we call venus_remove, there might be an unfished work. The possible
sequence is as follows:
CPU0 CPU1
|venus_sys_error_handler
venus_remove |
hfi_destroy |
venus_hfi_destroy |
kfree(hdev); |
|hfi_reinit
|venus_hfi_queues_reinit
|//use hdev
Fix it by canceling the work in venus_remove. |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: Fix zero-division error when disabling tc cbs
The commit b8c43360f6e4 ("net: stmmac: No need to calculate speed divider
when offload is disabled") allows the "port_transmit_rate_kbps" to be
set to a value of 0, which is then passed to the "div_s64" function when
tc-cbs is disabled. This leads to a zero-division error.
When tc-cbs is disabled, the idleslope, sendslope, and credit values the
credit values are not required to be configured. Therefore, adding a return
statement after setting the txQ mode to DCB when tc-cbs is disabled would
prevent a zero-division error. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Initialize get_bytes_per_element's default to 1
Variables, used as denominators and maybe not assigned to other values,
should not be 0. bytes_per_element_y & bytes_per_element_c are
initialized by get_bytes_per_element() which should never return 0.
This fixes 10 DIVIDE_BY_ZERO issues reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing/timerlat: Fix a race during cpuhp processing
There is another found exception that the "timerlat/1" thread was
scheduled on CPU0, and lead to timer corruption finally:
```
ODEBUG: init active (active state 0) object: ffff888237c2e108 object type: hrtimer hint: timerlat_irq+0x0/0x220
WARNING: CPU: 0 PID: 426 at lib/debugobjects.c:518 debug_print_object+0x7d/0xb0
Modules linked in:
CPU: 0 UID: 0 PID: 426 Comm: timerlat/1 Not tainted 6.11.0-rc7+ #45
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:debug_print_object+0x7d/0xb0
...
Call Trace:
<TASK>
? __warn+0x7c/0x110
? debug_print_object+0x7d/0xb0
? report_bug+0xf1/0x1d0
? prb_read_valid+0x17/0x20
? handle_bug+0x3f/0x70
? exc_invalid_op+0x13/0x60
? asm_exc_invalid_op+0x16/0x20
? debug_print_object+0x7d/0xb0
? debug_print_object+0x7d/0xb0
? __pfx_timerlat_irq+0x10/0x10
__debug_object_init+0x110/0x150
hrtimer_init+0x1d/0x60
timerlat_main+0xab/0x2d0
? __pfx_timerlat_main+0x10/0x10
kthread+0xb7/0xe0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2d/0x40
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
```
After tracing the scheduling event, it was discovered that the migration
of the "timerlat/1" thread was performed during thread creation. Further
analysis confirmed that it is because the CPU online processing for
osnoise is implemented through workers, which is asynchronous with the
offline processing. When the worker was scheduled to create a thread, the
CPU may has already been removed from the cpu_online_mask during the offline
process, resulting in the inability to select the right CPU:
T1 | T2
[CPUHP_ONLINE] | cpu_device_down()
osnoise_hotplug_workfn() |
| cpus_write_lock()
| takedown_cpu(1)
| cpus_write_unlock()
[CPUHP_OFFLINE] |
cpus_read_lock() |
start_kthread(1) |
cpus_read_unlock() |
To fix this, skip online processing if the CPU is already offline. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to check atomic_file in f2fs ioctl interfaces
Some f2fs ioctl interfaces like f2fs_ioc_set_pin_file(),
f2fs_move_file_range(), and f2fs_defragment_range() missed to
check atomic_write status, which may cause potential race issue,
fix it. |
| Qualys discovered that needrestart, before version 3.8, allows local attackers to execute arbitrary code as root by winning a race condition and tricking needrestart into running their own, fake Python interpreter (instead of the system's real Python interpreter). The initial security fix (6ce6136) introduced a regression which was subsequently resolved (42af5d3). |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: get rid of online repaire on corrupted directory
syzbot reports a f2fs bug as below:
kernel BUG at fs/f2fs/inode.c:896!
RIP: 0010:f2fs_evict_inode+0x1598/0x15c0 fs/f2fs/inode.c:896
Call Trace:
evict+0x532/0x950 fs/inode.c:704
dispose_list fs/inode.c:747 [inline]
evict_inodes+0x5f9/0x690 fs/inode.c:797
generic_shutdown_super+0x9d/0x2d0 fs/super.c:627
kill_block_super+0x44/0x90 fs/super.c:1696
kill_f2fs_super+0x344/0x690 fs/f2fs/super.c:4898
deactivate_locked_super+0xc4/0x130 fs/super.c:473
cleanup_mnt+0x41f/0x4b0 fs/namespace.c:1373
task_work_run+0x24f/0x310 kernel/task_work.c:228
ptrace_notify+0x2d2/0x380 kernel/signal.c:2402
ptrace_report_syscall include/linux/ptrace.h:415 [inline]
ptrace_report_syscall_exit include/linux/ptrace.h:477 [inline]
syscall_exit_work+0xc6/0x190 kernel/entry/common.c:173
syscall_exit_to_user_mode_prepare kernel/entry/common.c:200 [inline]
__syscall_exit_to_user_mode_work kernel/entry/common.c:205 [inline]
syscall_exit_to_user_mode+0x279/0x370 kernel/entry/common.c:218
do_syscall_64+0x100/0x230 arch/x86/entry/common.c:89
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0010:f2fs_evict_inode+0x1598/0x15c0 fs/f2fs/inode.c:896
Online repaire on corrupted directory in f2fs_lookup() can generate
dirty data/meta while racing w/ readonly remount, it may leave dirty
inode after filesystem becomes readonly, however, checkpoint() will
skips flushing dirty inode in a state of readonly mode, result in
above panic.
Let's get rid of online repaire in f2fs_lookup(), and leave the work
to fsck.f2fs. |
| In the Linux kernel, the following vulnerability has been resolved:
vfs: fix race between evice_inodes() and find_inode()&iput()
Hi, all
Recently I noticed a bug[1] in btrfs, after digged it into
and I believe it'a race in vfs.
Let's assume there's a inode (ie ino 261) with i_count 1 is
called by iput(), and there's a concurrent thread calling
generic_shutdown_super().
cpu0: cpu1:
iput() // i_count is 1
->spin_lock(inode)
->dec i_count to 0
->iput_final() generic_shutdown_super()
->__inode_add_lru() ->evict_inodes()
// cause some reason[2] ->if (atomic_read(inode->i_count)) continue;
// return before // inode 261 passed the above check
// list_lru_add_obj() // and then schedule out
->spin_unlock()
// note here: the inode 261
// was still at sb list and hash list,
// and I_FREEING|I_WILL_FREE was not been set
btrfs_iget()
// after some function calls
->find_inode()
// found the above inode 261
->spin_lock(inode)
// check I_FREEING|I_WILL_FREE
// and passed
->__iget()
->spin_unlock(inode) // schedule back
->spin_lock(inode)
// check (I_NEW|I_FREEING|I_WILL_FREE) flags,
// passed and set I_FREEING
iput() ->spin_unlock(inode)
->spin_lock(inode) ->evict()
// dec i_count to 0
->iput_final()
->spin_unlock()
->evict()
Now, we have two threads simultaneously evicting
the same inode, which may trigger the BUG(inode->i_state & I_CLEAR)
statement both within clear_inode() and iput().
To fix the bug, recheck the inode->i_count after holding i_lock.
Because in the most scenarios, the first check is valid, and
the overhead of spin_lock() can be reduced.
If there is any misunderstanding, please let me know, thanks.
[1]: https://lore.kernel.org/linux-btrfs/000000000000eabe1d0619c48986@google.com/
[2]: The reason might be 1. SB_ACTIVE was removed or 2. mapping_shrinkable()
return false when I reproduced the bug. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: iio: frequency: ad9834: Validate frequency parameter value
In ad9834_write_frequency() clk_get_rate() can return 0. In such case
ad9834_calc_freqreg() call will lead to division by zero. Checking
'if (fout > (clk_freq / 2))' doesn't protect in case of 'fout' is 0.
ad9834_write_frequency() is called from ad9834_write(), where fout is
taken from text buffer, which can contain any value.
Modify parameters checking.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Acquire kvm->srcu when handling KVM_SET_VCPU_EVENTS
Grab kvm->srcu when processing KVM_SET_VCPU_EVENTS, as KVM will forcibly
leave nested VMX/SVM if SMM mode is being toggled, and leaving nested VMX
reads guest memory.
Note, kvm_vcpu_ioctl_x86_set_vcpu_events() can also be called from KVM_RUN
via sync_regs(), which already holds SRCU. I.e. trying to precisely use
kvm_vcpu_srcu_read_lock() around the problematic SMM code would cause
problems. Acquiring SRCU isn't all that expensive, so for simplicity,
grab it unconditionally for KVM_SET_VCPU_EVENTS.
=============================
WARNING: suspicious RCU usage
6.10.0-rc7-332d2c1d713e-next-vm #552 Not tainted
-----------------------------
include/linux/kvm_host.h:1027 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by repro/1071:
#0: ffff88811e424430 (&vcpu->mutex){+.+.}-{3:3}, at: kvm_vcpu_ioctl+0x7d/0x970 [kvm]
stack backtrace:
CPU: 15 PID: 1071 Comm: repro Not tainted 6.10.0-rc7-332d2c1d713e-next-vm #552
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x7f/0x90
lockdep_rcu_suspicious+0x13f/0x1a0
kvm_vcpu_gfn_to_memslot+0x168/0x190 [kvm]
kvm_vcpu_read_guest+0x3e/0x90 [kvm]
nested_vmx_load_msr+0x6b/0x1d0 [kvm_intel]
load_vmcs12_host_state+0x432/0xb40 [kvm_intel]
vmx_leave_nested+0x30/0x40 [kvm_intel]
kvm_vcpu_ioctl_x86_set_vcpu_events+0x15d/0x2b0 [kvm]
kvm_arch_vcpu_ioctl+0x1107/0x1750 [kvm]
? mark_held_locks+0x49/0x70
? kvm_vcpu_ioctl+0x7d/0x970 [kvm]
? kvm_vcpu_ioctl+0x497/0x970 [kvm]
kvm_vcpu_ioctl+0x497/0x970 [kvm]
? lock_acquire+0xba/0x2d0
? find_held_lock+0x2b/0x80
? do_user_addr_fault+0x40c/0x6f0
? lock_release+0xb7/0x270
__x64_sys_ioctl+0x82/0xb0
do_syscall_64+0x6c/0x170
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7ff11eb1b539
</TASK> |