Search

Search Results (313406 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-43906 1 Dell 3 Data Domain Operating System, Powerprotect Data Domain, Powerprotect Dd 2025-10-08 6.7 Medium
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain an Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') vulnerability. A high privileged attacker with local access could potentially exploit this vulnerability, leading to arbitrary command execution. Exploitation may allow privilege escalation to root.
CVE-2025-43907 1 Dell 3 Data Domain Operating System, Powerprotect Data Domain, Powerprotect Dd 2025-10-08 6.5 Medium
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain a Path Traversal: '.../...//' vulnerability. A low privileged attacker with remote access could potentially exploit this vulnerability, leading to Information exposure.
CVE-2025-43908 1 Dell 3 Data Domain Operating System, Powerprotect Data Domain, Powerprotect Dd 2025-10-08 6.4 Medium
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain an Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') vulnerability. A high privileged attacker with local access could potentially exploit this vulnerability to execute arbitrary commands with root privileges.
CVE-2025-43910 1 Dell 3 Data Domain Operating System, Powerprotect Data Domain, Powerprotect Dd 2025-10-08 2.3 Low
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain a Stack-based Buffer Overflow vulnerability in the DDSH CLI. A high privileged attacker with local access could potentially exploit this vulnerability, leading to Denial of service.
CVE-2025-43911 1 Dell 3 Data Domain Operating System, Powerprotect Data Domain, Powerprotect Dd 2025-10-08 6.7 Medium
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain an Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') vulnerability. A high privileged attacker with local access could potentially exploit this vulnerability, leading to arbitrary command execution. Exploitation may allow privilege escalation to root.
CVE-2025-43912 1 Dell 3 Data Domain Operating System, Powerprotect Data Domain, Powerprotect Dd 2025-10-08 5.3 Medium
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain a Heap-based Buffer Overflow vulnerability. An unauthenticated attacker with remote access could potentially exploit this vulnerability, leading to Denial of service.
CVE-2025-43913 1 Dell 3 Data Domain Operating System, Powerprotect Data Domain, Powerprotect Dd 2025-10-08 5.3 Medium
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain an Use of a Broken or Risky Cryptographic Algorithm vulnerability in the DDOS. An unauthenticated attacker with remote access could potentially exploit this vulnerability, leading to information disclosure. The vulnerability could be leveraged by attackers to conduct phishing attacks that cause users to divulge sensitive information.
CVE-2025-43914 4 Canonical, Dell, Linux and 1 more 4 Ubuntu, Powerprotect Data Domain, Linux and 1 more 2025-10-08 7.5 High
Dell PowerProtect Data Domain BoostFS for Linux Ubuntu systems of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain an Incorrect Privilege Assignment vulnerability. A low privileged attacker with local access could potentially exploit this vulnerability, leading to Unauthorized access.
CVE-2025-43934 1 Dell 3 Data Domain Operating System, Powerprotect Data Domain, Powerprotect Dd 2025-10-08 6 Medium
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain an Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') vulnerability. A high privileged attacker with local access could potentially exploit this vulnerability, leading to Denial of service and Unauthorized access.
CVE-2025-45375 1 Dell 3 Data Domain Operating System, Powerprotect Data Domain, Powerprotect Dd 2025-10-08 4.4 Medium
Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.3.0.15, LTS2025 release version 8.3.1.0, LTS2024 release versions 7.13.1.0 through 7.13.1.30, LTS 2023 release versions 7.10.1.0 through 7.10.1.60, contain a Stack-based Buffer Overflow vulnerability. A high privileged attacker with local access could potentially exploit this vulnerability, leading to Denial of service.
CVE-2025-53967 2025-10-08 8 High
Framelink Figma MCP Server before 0.6.3 allows an unauthenticated remote attacker to execute arbitrary operating system commands via a crafted HTTP POST request with shell metacharacters in input that is used by a fetchWithRetry curl command. The vulnerable endpoint fails to properly sanitize user-supplied input, enabling the attacker to inject malicious commands that are executed with the privileges of the MCP process. Exploitation requires network access to the MCP interface.
CVE-2025-56243 1 Puneethreddyhc 1 Event Management 2025-10-08 6.1 Medium
A Cross-Site Scripting (XSS) vulnerability was found in the register.php page of PuneethReddyHC Event Management System 1.0, where the event_id GET parameter is improperly handled. An attacker can craft a malicious URL to execute arbitrary JavaScript in the victim s browser by injecting code into this parameter.
CVE-2025-59303 2025-10-08 6.4 Medium
HAProxy Kubernetes Ingress Controller before 3.1.13, when the config-snippets feature flag is used, accepts config snippets from users with create/update permissions. This can result in obtaining an ingress token secret as a response. The fixed versions of HAProxy Enterprise Kubernetes Ingress Controller are 3.0.16-ee1, 1.11.13-ee1, and 1.9.15-ee1.
CVE-2025-60313 2025-10-08 6.1 Medium
Sourcecodester Link Status Checker 1.0 is vulnerable to a Cross-Site Scripting (XSS) in the Enter URLs to check input field. This allows a remote attacker to execute arbitrary code.
CVE-2025-60318 2025-10-08 6.1 Medium
SourceCodester Pet Grooming Management Software 1.0 is vulnerable to Cross Site Scripting (XSS) in /admin/profile.php via the fname (First Name) and lname (Last Name) fields.
CVE-2025-61670 1 Bytecodealliance 1 Wasmtime 2025-10-08 N/A
Wasmtime is a runtime for WebAssembly. Wasmtime 37.0.0 and 37.0.1 have memory leaks in the C/C++ API when using bindings for the `anyref` or `externref` WebAssembly values. This is caused by a regression introduced during the development of 37.0.0 and all prior versions of Wasmtime are unaffected. If `anyref` or `externref` is not used in the C/C++ API then embeddings are also unaffected by the leaky behavior. The `wasmtime` Rust crate is unaffected by this leak. Development of Wasmtime 37.0.0 included a refactoring in Rust of changing the old `ManuallyRooted<T>` type to a new `OwnedRooted<T>` type. This change was integrated into Wasmtime's C API but left the C API in a state which had memory leaks. Additionally the new ownership semantics around this type were not reflected into the C++ API, making it leak-prone. A short version of the change is that previously `ManuallyRooted<T>`, as the name implies, required manual calls to an "unroot" operation. If this was forgotten then the memory was still cleaned up when the `wasmtime_store_t` itself was destroyed eventually. Documentation of when to "unroot" was sparse and there were already situations prior to 37.0.0 where memory would be leaked until the store was destroyed anyway. All memory, though, was always bound by the store, and destroying the store would guarantee that there were no memory leaks. In migrating to `OwnedRooted<T>` the usage of the type in Rust changed. A manual "unroot" operation is no longer required and it happens naturally as a destructor of the `OwnedRooted<T>` type in Rust itself. These new resource ownership semantics were not fully integrated into the preexisting semantics of the C/C++ APIs in Wasmtime. A crucial distinction of `OwnedRooted<T>` vs `ManuallyRooted<T>` is that the `OwnedRooted<T>` type allocates host memory outside of the store. This means that if an `OwnedRooted<T>` is leaked then destroying a store does not release this memory and it's a permanent memory leak on the host. This led to a few distinct, but related, issues arising: A typo in the `wasmtime_val_unroot` function in the C API meant that it did not actually unroot anything. This meant that even if embedders faithfully call the function then memory will be leaked. If a host-defined function returned a `wasmtime_{externref,anyref}_t` value then the value was never unrooted. The C/C++ API no longer has access to the value and the Rust implementation did not unroot. This meant that any values returned this way were never unrooted. The goal of the C++ API of Wasmtime is to encode automatic memory management in the type system, but the C++ API was not updated when `OwnedRooted<T>` was added. This meant that idiomatic usage of the C++ API would leak memory due to a lack of destructors on values. These issues have all been fixed in a 37.0.2 release of Wasmtime. The implementation of the C and C++ APIs have been updated accordingly and respectively to account for the changes of ownership here. For example `wasmtime_val_unroot` has been fixed to unroot, the Rust-side implementation of calling an embedder-defined function will unroot return values, and the C++ API now has destructors on the `ExternRef`, `AnyRef`, and `Val` types. These changes have been made to the 37.0.x release branch in a non-API-breaking fashion. Changes to the 38.0.0 release branch (and `main` in the Wasmtime repository) include minor API updates to better accommodate the API semantic changes. The only known workaround at this time is to avoid using `externref` and `anyref` in the C/C++ API of Wasmtime. If avoiding those types is not possible then it's required for users to update to mitigate the leak issue.
CVE-2023-53647 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Drivers: hv: vmbus: Don't dereference ACPI root object handle Since the commit referenced in the Fixes: tag below the VMBus client driver is walking the ACPI namespace up from the VMBus ACPI device to the ACPI namespace root object trying to find Hyper-V MMIO ranges. However, if it is not able to find them it ends trying to walk resources of the ACPI namespace root object itself. This object has all-ones handle, which causes a NULL pointer dereference in the ACPI code (from dereferencing this pointer with an offset). This in turn causes an oops on boot with VMBus host implementations that do not provide Hyper-V MMIO ranges in their VMBus ACPI device or its ancestors. The QEMU VMBus implementation is an example of such implementation. I guess providing these ranges is optional, since all tested Windows versions seem to be able to use VMBus devices without them. Fix this by explicitly terminating the lookup at the ACPI namespace root object. Note that Linux guests under KVM/QEMU do not use the Hyper-V PV interface by default - they only do so if the KVM PV interface is missing or disabled. Example stack trace of such oops: [ 3.710827] ? __die+0x1f/0x60 [ 3.715030] ? page_fault_oops+0x159/0x460 [ 3.716008] ? exc_page_fault+0x73/0x170 [ 3.716959] ? asm_exc_page_fault+0x22/0x30 [ 3.717957] ? acpi_ns_lookup+0x7a/0x4b0 [ 3.718898] ? acpi_ns_internalize_name+0x79/0xc0 [ 3.720018] acpi_ns_get_node_unlocked+0xb5/0xe0 [ 3.721120] ? acpi_ns_check_object_type+0xfe/0x200 [ 3.722285] ? acpi_rs_convert_aml_to_resource+0x37/0x6e0 [ 3.723559] ? down_timeout+0x3a/0x60 [ 3.724455] ? acpi_ns_get_node+0x3a/0x60 [ 3.725412] acpi_ns_get_node+0x3a/0x60 [ 3.726335] acpi_ns_evaluate+0x1c3/0x2c0 [ 3.727295] acpi_ut_evaluate_object+0x64/0x1b0 [ 3.728400] acpi_rs_get_method_data+0x2b/0x70 [ 3.729476] ? vmbus_platform_driver_probe+0x1d0/0x1d0 [hv_vmbus] [ 3.730940] ? vmbus_platform_driver_probe+0x1d0/0x1d0 [hv_vmbus] [ 3.732411] acpi_walk_resources+0x78/0xd0 [ 3.733398] vmbus_platform_driver_probe+0x9f/0x1d0 [hv_vmbus] [ 3.734802] platform_probe+0x3d/0x90 [ 3.735684] really_probe+0x19b/0x400 [ 3.736570] ? __device_attach_driver+0x100/0x100 [ 3.737697] __driver_probe_device+0x78/0x160 [ 3.738746] driver_probe_device+0x1f/0x90 [ 3.739743] __driver_attach+0xc2/0x1b0 [ 3.740671] bus_for_each_dev+0x70/0xc0 [ 3.741601] bus_add_driver+0x10e/0x210 [ 3.742527] driver_register+0x55/0xf0 [ 3.744412] ? 0xffffffffc039a000 [ 3.745207] hv_acpi_init+0x3c/0x1000 [hv_vmbus]
CVE-2025-61672 2025-10-08 N/A
Synapse is an open source Matrix homeserver implementation. Lack of validation for device keys in Synapse before 1.138.3 and in Synapse 1.139.0 allow an attacker registered on the victim homeserver to degrade federation functionality, unpredictably breaking outbound federation to other homeservers. The issue is patched in Synapse 1.138.3, 1.138.4, 1.139.1, and 1.139.2. Note that even though 1.138.3 and 1.139.1 fix the vulnerability, they inadvertently introduced an unrelated regression. For this reason, the maintainers of Synapse recommend skipping these releases and upgrading straight to 1.138.4 and 1.139.2.
CVE-2023-53655 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: rcu: Avoid stack overflow due to __rcu_irq_enter_check_tick() being kprobe-ed Registering a kprobe on __rcu_irq_enter_check_tick() can cause kernel stack overflow as shown below. This issue can be reproduced by enabling CONFIG_NO_HZ_FULL and booting the kernel with argument "nohz_full=", and then giving the following commands at the shell prompt: # cd /sys/kernel/tracing/ # echo 'p:mp1 __rcu_irq_enter_check_tick' >> kprobe_events # echo 1 > events/kprobes/enable This commit therefore adds __rcu_irq_enter_check_tick() to the kprobes blacklist using NOKPROBE_SYMBOL(). Insufficient stack space to handle exception! ESR: 0x00000000f2000004 -- BRK (AArch64) FAR: 0x0000ffffccf3e510 Task stack: [0xffff80000ad30000..0xffff80000ad38000] IRQ stack: [0xffff800008050000..0xffff800008058000] Overflow stack: [0xffff089c36f9f310..0xffff089c36fa0310] CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19 Hardware name: linux,dummy-virt (DT) pstate: 400003c5 (nZcv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __rcu_irq_enter_check_tick+0x0/0x1b8 lr : ct_nmi_enter+0x11c/0x138 sp : ffff80000ad30080 x29: ffff80000ad30080 x28: ffff089c82e20000 x27: 0000000000000000 x26: 0000000000000000 x25: ffff089c02a8d100 x24: 0000000000000000 x23: 00000000400003c5 x22: 0000ffffccf3e510 x21: ffff089c36fae148 x20: ffff80000ad30120 x19: ffffa8da8fcce148 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: ffffa8da8e44ea6c x14: ffffa8da8e44e968 x13: ffffa8da8e03136c x12: 1fffe113804d6809 x11: ffff6113804d6809 x10: 0000000000000a60 x9 : dfff800000000000 x8 : ffff089c026b404f x7 : 00009eec7fb297f7 x6 : 0000000000000001 x5 : ffff80000ad30120 x4 : dfff800000000000 x3 : ffffa8da8e3016f4 x2 : 0000000000000003 x1 : 0000000000000000 x0 : 0000000000000000 Kernel panic - not syncing: kernel stack overflow CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0xf8/0x108 show_stack+0x20/0x30 dump_stack_lvl+0x68/0x84 dump_stack+0x1c/0x38 panic+0x214/0x404 add_taint+0x0/0xf8 panic_bad_stack+0x144/0x160 handle_bad_stack+0x38/0x58 __bad_stack+0x78/0x7c __rcu_irq_enter_check_tick+0x0/0x1b8 arm64_enter_el1_dbg.isra.0+0x14/0x20 el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 arm64_enter_el1_dbg.isra.0+0x14/0x20 el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 arm64_enter_el1_dbg.isra.0+0x14/0x20 el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 [...] el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 arm64_enter_el1_dbg.isra.0+0x14/0x20 el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 arm64_enter_el1_dbg.isra.0+0x14/0x20 el1_dbg+0x2c/0x90 el1h_64_sync_handler+0xcc/0xe8 el1h_64_sync+0x64/0x68 __rcu_irq_enter_check_tick+0x0/0x1b8 el1_interrupt+0x28/0x60 el1h_64_irq_handler+0x18/0x28 el1h_64_irq+0x64/0x68 __ftrace_set_clr_event_nolock+0x98/0x198 __ftrace_set_clr_event+0x58/0x80 system_enable_write+0x144/0x178 vfs_write+0x174/0x738 ksys_write+0xd0/0x188 __arm64_sys_write+0x4c/0x60 invoke_syscall+0x64/0x180 el0_svc_common.constprop.0+0x84/0x160 do_el0_svc+0x48/0xe8 el0_svc+0x34/0xd0 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x190/0x194 SMP: stopping secondary CPUs Kernel Offset: 0x28da86000000 from 0xffff800008000000 PHYS_OFFSET: 0xfffff76600000000 CPU features: 0x00000,01a00100,0000421b Memory Limit: none
CVE-2023-53664 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: OPP: Fix potential null ptr dereference in dev_pm_opp_get_required_pstate() "opp" pointer is dereferenced before the IS_ERR_OR_NULL() check. Fix it by removing the dereference to cache opp_table and dereference it directly where opp_table is used. This fixes the following smatch warning: drivers/opp/core.c:232 dev_pm_opp_get_required_pstate() warn: variable dereferenced before IS_ERR check 'opp' (see line 230)