CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
vsock/virtio: discard packets if the transport changes
If the socket has been de-assigned or assigned to another transport,
we must discard any packets received because they are not expected
and would cause issues when we access vsk->transport.
A possible scenario is described by Hyunwoo Kim in the attached link,
where after a first connect() interrupted by a signal, and a second
connect() failed, we can find `vsk->transport` at NULL, leading to a
NULL pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
iomap: avoid avoid truncating 64-bit offset to 32 bits
on 32-bit kernels, iomap_write_delalloc_scan() was inadvertently using a
32-bit position due to folio_next_index() returning an unsigned long.
This could lead to an infinite loop when writing to an xfs filesystem. |
In the Linux kernel, the following vulnerability has been resolved:
vsock: prevent null-ptr-deref in vsock_*[has_data|has_space]
Recent reports have shown how we sometimes call vsock_*_has_data()
when a vsock socket has been de-assigned from a transport (see attached
links), but we shouldn't.
Previous commits should have solved the real problems, but we may have
more in the future, so to avoid null-ptr-deref, we can return 0
(no space, no data available) but with a warning.
This way the code should continue to run in a nearly consistent state
and have a warning that allows us to debug future problems. |
In the Linux kernel, the following vulnerability has been resolved:
filemap: avoid truncating 64-bit offset to 32 bits
On 32-bit kernels, folio_seek_hole_data() was inadvertently truncating a
64-bit value to 32 bits, leading to a possible infinite loop when writing
to an xfs filesystem. |
In the Linux kernel, the following vulnerability has been resolved:
gpio: virtuser: fix missing lookup table cleanups
When a virtuser device is created via configfs and the probe fails due
to an incorrect lookup table, the table is not removed. This prevents
subsequent probe attempts from succeeding, even if the issue is
corrected, unless the device is released. Additionally, cleanup is also
needed in the less likely case of platform_device_register_full()
failure.
Besides, a consistent memory leak in lookup_table->dev_id was spotted
using kmemleak by toggling the live state between 0 and 1 with a correct
lookup table.
Introduce gpio_virtuser_remove_lookup_table() as the counterpart to the
existing gpio_virtuser_make_lookup_table() and call it from all
necessary points to ensure proper cleanup. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: avoid NULL pointer dereference if no valid extent tree
[BUG]
Syzbot reported a crash with the following call trace:
BTRFS info (device loop0): scrub: started on devid 1
BUG: kernel NULL pointer dereference, address: 0000000000000208
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 106e70067 P4D 106e70067 PUD 107143067 PMD 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 UID: 0 PID: 689 Comm: repro Kdump: loaded Tainted: G O 6.13.0-rc4-custom+ #206
Tainted: [O]=OOT_MODULE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 02/02/2022
RIP: 0010:find_first_extent_item+0x26/0x1f0 [btrfs]
Call Trace:
<TASK>
scrub_find_fill_first_stripe+0x13d/0x3b0 [btrfs]
scrub_simple_mirror+0x175/0x260 [btrfs]
scrub_stripe+0x5d4/0x6c0 [btrfs]
scrub_chunk+0xbb/0x170 [btrfs]
scrub_enumerate_chunks+0x2f4/0x5f0 [btrfs]
btrfs_scrub_dev+0x240/0x600 [btrfs]
btrfs_ioctl+0x1dc8/0x2fa0 [btrfs]
? do_sys_openat2+0xa5/0xf0
__x64_sys_ioctl+0x97/0xc0
do_syscall_64+0x4f/0x120
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
[CAUSE]
The reproducer is using a corrupted image where extent tree root is
corrupted, thus forcing to use "rescue=all,ro" mount option to mount the
image.
Then it triggered a scrub, but since scrub relies on extent tree to find
where the data/metadata extents are, scrub_find_fill_first_stripe()
relies on an non-empty extent root.
But unfortunately scrub_find_fill_first_stripe() doesn't really expect
an NULL pointer for extent root, it use extent_root to grab fs_info and
triggered a NULL pointer dereference.
[FIX]
Add an extra check for a valid extent root at the beginning of
scrub_find_fill_first_stripe().
The new error path is introduced by 42437a6386ff ("btrfs: introduce
mount option rescue=ignorebadroots"), but that's pretty old, and later
commit b979547513ff ("btrfs: scrub: introduce helper to find and fill
sector info for a scrub_stripe") changed how we do scrub.
So for kernels older than 6.6, the fix will need manual backport. |
In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fixed hclge_fetch_pf_reg accesses bar space out of bounds issue
The TQP BAR space is divided into two segments. TQPs 0-1023 and TQPs
1024-1279 are in different BAR space addresses. However,
hclge_fetch_pf_reg does not distinguish the tqp space information when
reading the tqp space information. When the number of TQPs is greater
than 1024, access bar space overwriting occurs.
The problem of different segments has been considered during the
initialization of tqp.io_base. Therefore, tqp.io_base is directly used
when the queue is read in hclge_fetch_pf_reg.
The error message:
Unable to handle kernel paging request at virtual address ffff800037200000
pc : hclge_fetch_pf_reg+0x138/0x250 [hclge]
lr : hclge_get_regs+0x84/0x1d0 [hclge]
Call trace:
hclge_fetch_pf_reg+0x138/0x250 [hclge]
hclge_get_regs+0x84/0x1d0 [hclge]
hns3_get_regs+0x2c/0x50 [hns3]
ethtool_get_regs+0xf4/0x270
dev_ethtool+0x674/0x8a0
dev_ioctl+0x270/0x36c
sock_do_ioctl+0x110/0x2a0
sock_ioctl+0x2ac/0x530
__arm64_sys_ioctl+0xa8/0x100
invoke_syscall+0x4c/0x124
el0_svc_common.constprop.0+0x140/0x15c
do_el0_svc+0x30/0xd0
el0_svc+0x1c/0x2c
el0_sync_handler+0xb0/0xb4
el0_sync+0x168/0x180 |
In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix kernel crash when 1588 is sent on HIP08 devices
Currently, HIP08 devices does not register the ptp devices, so the
hdev->ptp is NULL. But the tx process would still try to set hardware time
stamp info with SKBTX_HW_TSTAMP flag and cause a kernel crash.
[ 128.087798] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018
...
[ 128.280251] pc : hclge_ptp_set_tx_info+0x2c/0x140 [hclge]
[ 128.286600] lr : hclge_ptp_set_tx_info+0x20/0x140 [hclge]
[ 128.292938] sp : ffff800059b93140
[ 128.297200] x29: ffff800059b93140 x28: 0000000000003280
[ 128.303455] x27: ffff800020d48280 x26: ffff0cb9dc814080
[ 128.309715] x25: ffff0cb9cde93fa0 x24: 0000000000000001
[ 128.315969] x23: 0000000000000000 x22: 0000000000000194
[ 128.322219] x21: ffff0cd94f986000 x20: 0000000000000000
[ 128.328462] x19: ffff0cb9d2a166c0 x18: 0000000000000000
[ 128.334698] x17: 0000000000000000 x16: ffffcf1fc523ed24
[ 128.340934] x15: 0000ffffd530a518 x14: 0000000000000000
[ 128.347162] x13: ffff0cd6bdb31310 x12: 0000000000000368
[ 128.353388] x11: ffff0cb9cfbc7070 x10: ffff2cf55dd11e02
[ 128.359606] x9 : ffffcf1f85a212b4 x8 : ffff0cd7cf27dab0
[ 128.365831] x7 : 0000000000000a20 x6 : ffff0cd7cf27d000
[ 128.372040] x5 : 0000000000000000 x4 : 000000000000ffff
[ 128.378243] x3 : 0000000000000400 x2 : ffffcf1f85a21294
[ 128.384437] x1 : ffff0cb9db520080 x0 : ffff0cb9db500080
[ 128.390626] Call trace:
[ 128.393964] hclge_ptp_set_tx_info+0x2c/0x140 [hclge]
[ 128.399893] hns3_nic_net_xmit+0x39c/0x4c4 [hns3]
[ 128.405468] xmit_one.constprop.0+0xc4/0x200
[ 128.410600] dev_hard_start_xmit+0x54/0xf0
[ 128.415556] sch_direct_xmit+0xe8/0x634
[ 128.420246] __dev_queue_xmit+0x224/0xc70
[ 128.425101] dev_queue_xmit+0x1c/0x40
[ 128.429608] ovs_vport_send+0xac/0x1a0 [openvswitch]
[ 128.435409] do_output+0x60/0x17c [openvswitch]
[ 128.440770] do_execute_actions+0x898/0x8c4 [openvswitch]
[ 128.446993] ovs_execute_actions+0x64/0xf0 [openvswitch]
[ 128.453129] ovs_dp_process_packet+0xa0/0x224 [openvswitch]
[ 128.459530] ovs_vport_receive+0x7c/0xfc [openvswitch]
[ 128.465497] internal_dev_xmit+0x34/0xb0 [openvswitch]
[ 128.471460] xmit_one.constprop.0+0xc4/0x200
[ 128.476561] dev_hard_start_xmit+0x54/0xf0
[ 128.481489] __dev_queue_xmit+0x968/0xc70
[ 128.486330] dev_queue_xmit+0x1c/0x40
[ 128.490856] ip_finish_output2+0x250/0x570
[ 128.495810] __ip_finish_output+0x170/0x1e0
[ 128.500832] ip_finish_output+0x3c/0xf0
[ 128.505504] ip_output+0xbc/0x160
[ 128.509654] ip_send_skb+0x58/0xd4
[ 128.513892] udp_send_skb+0x12c/0x354
[ 128.518387] udp_sendmsg+0x7a8/0x9c0
[ 128.522793] inet_sendmsg+0x4c/0x8c
[ 128.527116] __sock_sendmsg+0x48/0x80
[ 128.531609] __sys_sendto+0x124/0x164
[ 128.536099] __arm64_sys_sendto+0x30/0x5c
[ 128.540935] invoke_syscall+0x50/0x130
[ 128.545508] el0_svc_common.constprop.0+0x10c/0x124
[ 128.551205] do_el0_svc+0x34/0xdc
[ 128.555347] el0_svc+0x20/0x30
[ 128.559227] el0_sync_handler+0xb8/0xc0
[ 128.563883] el0_sync+0x160/0x180 |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix tlb invalidation when wedging
If GuC fails to load, the driver wedges, but in the process it tries to
do stuff that may not be initialized yet. This moves the
xe_gt_tlb_invalidation_init() to be done earlier: as its own doc says,
it's a software-only initialization and should had been named with the
_early() suffix.
Move it to be called by xe_gt_init_early(), so the locks and seqno are
initialized, avoiding a NULL ptr deref when wedging:
xe 0000:03:00.0: [drm] *ERROR* GT0: load failed: status: Reset = 0, BootROM = 0x50, UKernel = 0x00, MIA = 0x00, Auth = 0x01
xe 0000:03:00.0: [drm] *ERROR* GT0: firmware signature verification failed
xe 0000:03:00.0: [drm] *ERROR* CRITICAL: Xe has declared device 0000:03:00.0 as wedged.
...
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 9 UID: 0 PID: 3908 Comm: modprobe Tainted: G U W 6.13.0-rc4-xe+ #3
Tainted: [U]=USER, [W]=WARN
Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-S ADP-S DDR5 UDIMM CRB, BIOS ADLSFWI1.R00.3275.A00.2207010640 07/01/2022
RIP: 0010:xe_gt_tlb_invalidation_reset+0x75/0x110 [xe]
This can be easily triggered by poking the GuC binary to force a
signature failure. There will still be an extra message,
xe 0000:03:00.0: [drm] *ERROR* GT0: GuC mmio request 0x4100: no reply 0x4100
but that's better than a NULL ptr deref.
(cherry picked from commit 5001ef3af8f2c972d6fd9c5221a8457556f8bea6) |
In the Linux kernel, the following vulnerability has been resolved:
mptcp: sysctl: sched: avoid using current->nsproxy
Using the 'net' structure via 'current' is not recommended for different
reasons.
First, if the goal is to use it to read or write per-netns data, this is
inconsistent with how the "generic" sysctl entries are doing: directly
by only using pointers set to the table entry, e.g. table->data. Linked
to that, the per-netns data should always be obtained from the table
linked to the netns it had been created for, which may not coincide with
the reader's or writer's netns.
Another reason is that access to current->nsproxy->netns can oops if
attempted when current->nsproxy had been dropped when the current task
is exiting. This is what syzbot found, when using acct(2):
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000005: 0000 [#1] PREEMPT SMP KASAN PTI
KASAN: null-ptr-deref in range [0x0000000000000028-0x000000000000002f]
CPU: 1 UID: 0 PID: 5924 Comm: syz-executor Not tainted 6.13.0-rc5-syzkaller-00004-gccb98ccef0e5 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
RIP: 0010:proc_scheduler+0xc6/0x3c0 net/mptcp/ctrl.c:125
Code: 03 42 80 3c 38 00 0f 85 fe 02 00 00 4d 8b a4 24 08 09 00 00 48 b8 00 00 00 00 00 fc ff df 49 8d 7c 24 28 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 cc 02 00 00 4d 8b 7c 24 28 48 8d 84 24 c8 00 00
RSP: 0018:ffffc900034774e8 EFLAGS: 00010206
RAX: dffffc0000000000 RBX: 1ffff9200068ee9e RCX: ffffc90003477620
RDX: 0000000000000005 RSI: ffffffff8b08f91e RDI: 0000000000000028
RBP: 0000000000000001 R08: ffffc90003477710 R09: 0000000000000040
R10: 0000000000000040 R11: 00000000726f7475 R12: 0000000000000000
R13: ffffc90003477620 R14: ffffc90003477710 R15: dffffc0000000000
FS: 0000000000000000(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fee3cd452d8 CR3: 000000007d116000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
proc_sys_call_handler+0x403/0x5d0 fs/proc/proc_sysctl.c:601
__kernel_write_iter+0x318/0xa80 fs/read_write.c:612
__kernel_write+0xf6/0x140 fs/read_write.c:632
do_acct_process+0xcb0/0x14a0 kernel/acct.c:539
acct_pin_kill+0x2d/0x100 kernel/acct.c:192
pin_kill+0x194/0x7c0 fs/fs_pin.c:44
mnt_pin_kill+0x61/0x1e0 fs/fs_pin.c:81
cleanup_mnt+0x3ac/0x450 fs/namespace.c:1366
task_work_run+0x14e/0x250 kernel/task_work.c:239
exit_task_work include/linux/task_work.h:43 [inline]
do_exit+0xad8/0x2d70 kernel/exit.c:938
do_group_exit+0xd3/0x2a0 kernel/exit.c:1087
get_signal+0x2576/0x2610 kernel/signal.c:3017
arch_do_signal_or_restart+0x90/0x7e0 arch/x86/kernel/signal.c:337
exit_to_user_mode_loop kernel/entry/common.c:111 [inline]
exit_to_user_mode_prepare include/linux/entry-common.h:329 [inline]
__syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline]
syscall_exit_to_user_mode+0x150/0x2a0 kernel/entry/common.c:218
do_syscall_64+0xda/0x250 arch/x86/entry/common.c:89
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fee3cb87a6a
Code: Unable to access opcode bytes at 0x7fee3cb87a40.
RSP: 002b:00007fffcccac688 EFLAGS: 00000202 ORIG_RAX: 0000000000000037
RAX: 0000000000000000 RBX: 00007fffcccac710 RCX: 00007fee3cb87a6a
RDX: 0000000000000041 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 0000000000000003 R08: 00007fffcccac6ac R09: 00007fffcccacac7
R10: 00007fffcccac710 R11: 0000000000000202 R12: 00007fee3cd49500
R13: 00007fffcccac6ac R14: 0000000000000000 R15: 00007fee3cd4b000
</TASK>
Modules linked in:
---[ end trace 0000000000000000 ]---
RIP: 0010:proc_scheduler+0xc6/0x3c0 net/mptcp/ctrl.c:125
Code: 03 42 80 3c 38 00 0f 85 fe 02 00 00 4d 8b a4 24 08 09 00 00 48 b8 00 00 00 00 00 fc
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
mptcp: sysctl: blackhole timeout: avoid using current->nsproxy
As mentioned in the previous commit, using the 'net' structure via
'current' is not recommended for different reasons:
- Inconsistency: getting info from the reader's/writer's netns vs only
from the opener's netns.
- current->nsproxy can be NULL in some cases, resulting in an 'Oops'
(null-ptr-deref), e.g. when the current task is exiting, as spotted by
syzbot [1] using acct(2).
The 'pernet' structure can be obtained from the table->data using
container_of(). |
In the Linux kernel, the following vulnerability has been resolved:
sctp: sysctl: rto_min/max: avoid using current->nsproxy
As mentioned in a previous commit of this series, using the 'net'
structure via 'current' is not recommended for different reasons:
- Inconsistency: getting info from the reader's/writer's netns vs only
from the opener's netns.
- current->nsproxy can be NULL in some cases, resulting in an 'Oops'
(null-ptr-deref), e.g. when the current task is exiting, as spotted by
syzbot [1] using acct(2).
The 'net' structure can be obtained from the table->data using
container_of().
Note that table->data could also be used directly, as this is the only
member needed from the 'net' structure, but that would increase the size
of this fix, to use '*data' everywhere 'net->sctp.rto_min/max' is used. |
In the Linux kernel, the following vulnerability has been resolved:
sctp: sysctl: udp_port: avoid using current->nsproxy
As mentioned in a previous commit of this series, using the 'net'
structure via 'current' is not recommended for different reasons:
- Inconsistency: getting info from the reader's/writer's netns vs only
from the opener's netns.
- current->nsproxy can be NULL in some cases, resulting in an 'Oops'
(null-ptr-deref), e.g. when the current task is exiting, as spotted by
syzbot [1] using acct(2).
The 'net' structure can be obtained from the table->data using
container_of().
Note that table->data could also be used directly, but that would
increase the size of this fix, while 'sctp.ctl_sock' still needs to be
retrieved from 'net' structure. |
In the Linux kernel, the following vulnerability has been resolved:
sctp: sysctl: plpmtud_probe_interval: avoid using current->nsproxy
As mentioned in a previous commit of this series, using the 'net'
structure via 'current' is not recommended for different reasons:
- Inconsistency: getting info from the reader's/writer's netns vs only
from the opener's netns.
- current->nsproxy can be NULL in some cases, resulting in an 'Oops'
(null-ptr-deref), e.g. when the current task is exiting, as spotted by
syzbot [1] using acct(2).
The 'net' structure can be obtained from the table->data using
container_of().
Note that table->data could also be used directly, as this is the only
member needed from the 'net' structure, but that would increase the size
of this fix, to use '*data' everywhere 'net->sctp.probe_interval' is
used. |
In the Linux kernel, the following vulnerability has been resolved:
rds: sysctl: rds_tcp_{rcv,snd}buf: avoid using current->nsproxy
As mentioned in a previous commit of this series, using the 'net'
structure via 'current' is not recommended for different reasons:
- Inconsistency: getting info from the reader's/writer's netns vs only
from the opener's netns.
- current->nsproxy can be NULL in some cases, resulting in an 'Oops'
(null-ptr-deref), e.g. when the current task is exiting, as spotted by
syzbot [1] using acct(2).
The per-netns structure can be obtained from the table->data using
container_of(), then the 'net' one can be retrieved from the listen
socket (if available). |
In the Linux kernel, the following vulnerability has been resolved:
cgroup/cpuset: remove kernfs active break
A warning was found:
WARNING: CPU: 10 PID: 3486953 at fs/kernfs/file.c:828
CPU: 10 PID: 3486953 Comm: rmdir Kdump: loaded Tainted: G
RIP: 0010:kernfs_should_drain_open_files+0x1a1/0x1b0
RSP: 0018:ffff8881107ef9e0 EFLAGS: 00010202
RAX: 0000000080000002 RBX: ffff888154738c00 RCX: dffffc0000000000
RDX: 0000000000000007 RSI: 0000000000000004 RDI: ffff888154738c04
RBP: ffff888154738c04 R08: ffffffffaf27fa15 R09: ffffed102a8e7180
R10: ffff888154738c07 R11: 0000000000000000 R12: ffff888154738c08
R13: ffff888750f8c000 R14: ffff888750f8c0e8 R15: ffff888154738ca0
FS: 00007f84cd0be740(0000) GS:ffff8887ddc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000555f9fbe00c8 CR3: 0000000153eec001 CR4: 0000000000370ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
kernfs_drain+0x15e/0x2f0
__kernfs_remove+0x165/0x300
kernfs_remove_by_name_ns+0x7b/0xc0
cgroup_rm_file+0x154/0x1c0
cgroup_addrm_files+0x1c2/0x1f0
css_clear_dir+0x77/0x110
kill_css+0x4c/0x1b0
cgroup_destroy_locked+0x194/0x380
cgroup_rmdir+0x2a/0x140
It can be explained by:
rmdir echo 1 > cpuset.cpus
kernfs_fop_write_iter // active=0
cgroup_rm_file
kernfs_remove_by_name_ns kernfs_get_active // active=1
__kernfs_remove // active=0x80000002
kernfs_drain cpuset_write_resmask
wait_event
//waiting (active == 0x80000001)
kernfs_break_active_protection
// active = 0x80000001
// continue
kernfs_unbreak_active_protection
// active = 0x80000002
...
kernfs_should_drain_open_files
// warning occurs
kernfs_put_active
This warning is caused by 'kernfs_break_active_protection' when it is
writing to cpuset.cpus, and the cgroup is removed concurrently.
The commit 3a5a6d0c2b03 ("cpuset: don't nest cgroup_mutex inside
get_online_cpus()") made cpuset_hotplug_workfn asynchronous, This change
involves calling flush_work(), which can create a multiple processes
circular locking dependency that involve cgroup_mutex, potentially leading
to a deadlock. To avoid deadlock. the commit 76bb5ab8f6e3 ("cpuset: break
kernfs active protection in cpuset_write_resmask()") added
'kernfs_break_active_protection' in the cpuset_write_resmask. This could
lead to this warning.
After the commit 2125c0034c5d ("cgroup/cpuset: Make cpuset hotplug
processing synchronous"), the cpuset_write_resmask no longer needs to
wait the hotplug to finish, which means that concurrent hotplug and cpuset
operations are no longer possible. Therefore, the deadlock doesn't exist
anymore and it does not have to 'break active protection' now. To fix this
warning, just remove kernfs_break_active_protection operation in the
'cpuset_write_resmask'. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix double accounting race when btrfs_run_delalloc_range() failed
[BUG]
When running btrfs with block size (4K) smaller than page size (64K,
aarch64), there is a very high chance to crash the kernel at
generic/750, with the following messages:
(before the call traces, there are 3 extra debug messages added)
BTRFS warning (device dm-3): read-write for sector size 4096 with page size 65536 is experimental
BTRFS info (device dm-3): checking UUID tree
hrtimer: interrupt took 5451385 ns
BTRFS error (device dm-3): cow_file_range failed, root=4957 inode=257 start=1605632 len=69632: -28
BTRFS error (device dm-3): run_delalloc_nocow failed, root=4957 inode=257 start=1605632 len=69632: -28
BTRFS error (device dm-3): failed to run delalloc range, root=4957 ino=257 folio=1572864 submit_bitmap=8-15 start=1605632 len=69632: -28
------------[ cut here ]------------
WARNING: CPU: 2 PID: 3020984 at ordered-data.c:360 can_finish_ordered_extent+0x370/0x3b8 [btrfs]
CPU: 2 UID: 0 PID: 3020984 Comm: kworker/u24:1 Tainted: G OE 6.13.0-rc1-custom+ #89
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs]
pc : can_finish_ordered_extent+0x370/0x3b8 [btrfs]
lr : can_finish_ordered_extent+0x1ec/0x3b8 [btrfs]
Call trace:
can_finish_ordered_extent+0x370/0x3b8 [btrfs] (P)
can_finish_ordered_extent+0x1ec/0x3b8 [btrfs] (L)
btrfs_mark_ordered_io_finished+0x130/0x2b8 [btrfs]
extent_writepage+0x10c/0x3b8 [btrfs]
extent_write_cache_pages+0x21c/0x4e8 [btrfs]
btrfs_writepages+0x94/0x160 [btrfs]
do_writepages+0x74/0x190
filemap_fdatawrite_wbc+0x74/0xa0
start_delalloc_inodes+0x17c/0x3b0 [btrfs]
btrfs_start_delalloc_roots+0x17c/0x288 [btrfs]
shrink_delalloc+0x11c/0x280 [btrfs]
flush_space+0x288/0x328 [btrfs]
btrfs_async_reclaim_data_space+0x180/0x228 [btrfs]
process_one_work+0x228/0x680
worker_thread+0x1bc/0x360
kthread+0x100/0x118
ret_from_fork+0x10/0x20
---[ end trace 0000000000000000 ]---
BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1605632 OE len=16384 to_dec=16384 left=0
BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1622016 OE len=12288 to_dec=12288 left=0
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1634304 OE len=8192 to_dec=4096 left=0
CPU: 1 UID: 0 PID: 3286940 Comm: kworker/u24:3 Tainted: G W OE 6.13.0-rc1-custom+ #89
Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
Workqueue: btrfs_work_helper [btrfs] (btrfs-endio-write)
pstate: 404000c5 (nZcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : process_one_work+0x110/0x680
lr : worker_thread+0x1bc/0x360
Call trace:
process_one_work+0x110/0x680 (P)
worker_thread+0x1bc/0x360 (L)
worker_thread+0x1bc/0x360
kthread+0x100/0x118
ret_from_fork+0x10/0x20
Code: f84086a1 f9000fe1 53041c21 b9003361 (f9400661)
---[ end trace 0000000000000000 ]---
Kernel panic - not syncing: Oops: Fatal exception
SMP: stopping secondary CPUs
SMP: failed to stop secondary CPUs 2-3
Dumping ftrace buffer:
(ftrace buffer empty)
Kernel Offset: 0x275bb9540000 from 0xffff800080000000
PHYS_OFFSET: 0xffff8fbba0000000
CPU features: 0x100,00000070,00801250,8201720b
[CAUSE]
The above warning is triggered immediately after the delalloc range
failure, this happens in the following sequence:
- Range [1568K, 1636K) is dirty
1536K 1568K 1600K 1636K 1664K
| |/////////|////////| |
Where 1536K, 1600K and 1664K are page boundaries (64K page size)
- Enter extent_writepage() for page 1536K
- Enter run_delalloc_nocow() with locke
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix deadlock when freeing cgroup storage
The following commit
bc235cdb423a ("bpf: Prevent deadlock from recursive bpf_task_storage_[get|delete]")
first introduced deadlock prevention for fentry/fexit programs attaching
on bpf_task_storage helpers. That commit also employed the logic in map
free path in its v6 version.
Later bpf_cgrp_storage was first introduced in
c4bcfb38a95e ("bpf: Implement cgroup storage available to non-cgroup-attached bpf progs")
which faces the same issue as bpf_task_storage, instead of its busy
counter, NULL was passed to bpf_local_storage_map_free() which opened
a window to cause deadlock:
<TASK>
(acquiring local_storage->lock)
_raw_spin_lock_irqsave+0x3d/0x50
bpf_local_storage_update+0xd1/0x460
bpf_cgrp_storage_get+0x109/0x130
bpf_prog_a4d4a370ba857314_cgrp_ptr+0x139/0x170
? __bpf_prog_enter_recur+0x16/0x80
bpf_trampoline_6442485186+0x43/0xa4
cgroup_storage_ptr+0x9/0x20
(holding local_storage->lock)
bpf_selem_unlink_storage_nolock.constprop.0+0x135/0x160
bpf_selem_unlink_storage+0x6f/0x110
bpf_local_storage_map_free+0xa2/0x110
bpf_map_free_deferred+0x5b/0x90
process_one_work+0x17c/0x390
worker_thread+0x251/0x360
kthread+0xd2/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
</TASK>
Progs:
- A: SEC("fentry/cgroup_storage_ptr")
- cgid (BPF_MAP_TYPE_HASH)
Record the id of the cgroup the current task belonging
to in this hash map, using the address of the cgroup
as the map key.
- cgrpa (BPF_MAP_TYPE_CGRP_STORAGE)
If current task is a kworker, lookup the above hash
map using function parameter @owner as the key to get
its corresponding cgroup id which is then used to get
a trusted pointer to the cgroup through
bpf_cgroup_from_id(). This trusted pointer can then
be passed to bpf_cgrp_storage_get() to finally trigger
the deadlock issue.
- B: SEC("tp_btf/sys_enter")
- cgrpb (BPF_MAP_TYPE_CGRP_STORAGE)
The only purpose of this prog is to fill Prog A's
hash map by calling bpf_cgrp_storage_get() for as
many userspace tasks as possible.
Steps to reproduce:
- Run A;
- while (true) { Run B; Destroy B; }
Fix this issue by passing its busy counter to the free procedure so
it can be properly incremented before storage/smap locking. |
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix racy issue from session lookup and expire
Increment the session reference count within the lock for lookup to avoid
racy issue with session expire. |
In the Linux kernel, the following vulnerability has been resolved:
firmware: qcom: scm: Fix missing read barrier in qcom_scm_get_tzmem_pool()
Commit 2e4955167ec5 ("firmware: qcom: scm: Fix __scm and waitq
completion variable initialization") introduced a write barrier in probe
function to store global '__scm' variable. We all known barriers are
paired (see memory-barriers.txt: "Note that write barriers should
normally be paired with read or address-dependency barriers"), therefore
accessing it from concurrent contexts requires read barrier. Previous
commit added such barrier in qcom_scm_is_available(), so let's use that
directly.
Lack of this read barrier can result in fetching stale '__scm' variable
value, NULL, and dereferencing it.
Note that barrier in qcom_scm_is_available() satisfies here the control
dependency. |